Nederlands

Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity

853
2024-02-21 14:17:01
Bekijk vertaling

Theoretical physicist Farok Miwivar studied the interaction between two sets of luminescent atoms in a quantum cavity - a quantum cavity is an optical device composed of two excellent small mirrors that can capture light in a small area for a long time.

This model and its predictions can be used for the next generation of superradiance lasers. They can be used and observed in cutting-edge cavity/waveguide quantum electrodynamics research.

One of the most stunning and unexpected phenomena in quantum optics is superradiance. It can be understood by imaging atoms as tiny antennas that emit electromagnetic radiation or light under appropriate conditions.

On the other hand, if these atoms are very close to each other, the atomic antennas will begin to communicate with each other and thus synchronize. This leads to light emission, whose intensity increases with the square of the number of atoms.

Recently, Farokh Mivehvar studied two sets of atoms, N1 and N2, where theoretically each atom has many atoms within a quantum cavity. This study was published in the journal Physical Review Letters. The atoms in each cluster are very close to each other and can produce superradiance.

Firstly, two huge antennas create a super giant antenna that can emit more superradiance. On the other hand, in the second method, due to the destructive competition between two large antennas, superradiance light emission is suppressed.

Especially, when the number of atoms in two ensembles is equal, superradiance light emission is suppressed.
Farokh Mivehvar said, "In addition, we also found that two giant antennas emit light, which is a combination of the two types mentioned earlier and has oscillation characteristics.".

In cutting-edge cavity/waveguide quantum electrodynamics experiments, the model and its predictions can be achieved and observed. The latest generation of so-called superradiance lasers may also find applications in the discovery.

Source: Laser Net

Gerelateerde aanbevelingen
  • The tesat optical terminal selected by Lockheed Martin satellite has passed ground testing

    Tesat Spacecom's laser communication terminal announced on October 26th that the company has passed critical ground testing deployed on NASA satellites.Tesat's SCOTT80 optical terminal was selected by Lockheed Martin, one of several manufacturers producing satellites for the Space Development Agency.SDA is an agency under the United States Space Force that plans to deploy a network of interconnect...

    2023-10-27
    Bekijk vertaling
  • The team led by Gao Chunqing and Fu Shiyao from Beijing University of Technology has made significant breakthroughs in the study of photon angular momentum regulation

    Recently, a team led by Gao Chunqing and Fu Shiyao from the School of Optoelectronics at Beijing University of Technology combined optical spatial coordinate transformation with photon spin Hall effect to construct a photon angular momentum filter for the first time internationally, achieving on-demand regulation of photon spin angular momentum and orbital angular momentum.The related achievements...

    2023-10-20
    Bekijk vertaling
  • Semiconductor lasers will support both TE and TM modes

    Typically, for lasers in optical communication systems, waveguide designs are used to achieve a single transverse mode. By adjusting the thickness of the surrounding area of the cladding layer and the etching depth of the ridge in the ridge waveguide device, a single mode device can be obtained. The importance of lasers is reflected in the following aspects:A chip without ridge waveguide design an...

    2023-10-20
    Bekijk vertaling
  • The role of PTFE in laser processing

    Polytetrafluoroethylene (PTFE) has improved the efficiency and repeatability of nanosecond and picosecond laser processing technologies used in microelectronics and display glass manufacturing. In the field of precision manufacturing, the demand for efficient and repeatable processes is crucial. The laser structure of glass and laser ablation of silicon substrates are key areas where precision p...

    2024-07-26
    Bekijk vertaling
  • Two photon absorption quantum mechanism breaks through the resolution and efficiency limits of optical nanoprinting

    Recently, a research team from the School of Physics and Optoelectronic Engineering at Jinan University has elucidated for the first time the time-dependent quantum mechanism of two-photon absorption and proposed a two-photon absorption (fpTPA) optical nanoprinting technology based on few photon irradiation, successfully breaking through the bottleneck of traditional two-photon printing technology...

    03-06
    Bekijk vertaling