Nederlands

Scientists have made breakthrough progress in using laser to cool sound waves

876
2024-01-22 15:17:11
Bekijk vertaling

A group of researchers from the Max Planck Institute of Optoelectronics has made a significant breakthrough in using laser cooling to travel sound waves. This development brings us one step closer to the quantum ground state of sound in waveguides, which is of great significance for quantum communication systems and future quantum technology.

By using laser cooling, scientists can significantly reduce the temperature of sound waves in optical fibers. They achieved a significant reduction of 219K, ten times higher than previously reported. In the end, they managed to reduce the initial number of phonons by 75% at a temperature of 74 K.

The key to this success lies in utilizing stimulated Brillouin scattering, a nonlinear optical effect that can effectively couple light waves to sound waves. Laser is used to cool acoustic vibrations, creating an environment with minimal thermal noise. This decrease in temperature has a significant impact on quantum systems, as thermal noise can hinder the functionality of quantum communication systems.

A significant advantage of using glass fibers is that they can conduct light and sound over long distances while maintaining strong interactions. During the experiment, researchers used a 50 centimeter long optical fiber to cool the sound wave that extended its entire length. Considering that most of the platforms previously brought to the quantum ground state were microscopic in size, this is remarkable.

The realization of cooling sound waves to such low temperatures has opened up new experimental fields, allowing for a deeper understanding of the fundamental properties of matter. In addition, due to the broadband and continuous existence of sound waves in waveguide systems, these advancements are of great significance for high-speed communication systems.

"We are very enthusiastic about the new insights that pushing these fibers into quantum ground states will bring," said Dr. Birgit Stiller, head of the Quantum Photoacoustics group. Not only from the perspective of basic research, it enables us to glimpse the quantum properties of extended objects, but also because it may have applications in quantum communication schemes and future quantum technologies.

In summary, the breakthrough made by researchers at the Max Planck Institute in utilizing laser cooling of sound waves has brought us closer to achieving the quantum ground state of sound. This development is of great significance to quantum communication systems and opens up new possibilities for future quantum technology.

Source: Laser Net

Gerelateerde aanbevelingen
  • Progress in Calibration of Large Aperture Diffractive Lenses in the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Mechanics

    Recently, the High Power Laser Physics Joint Laboratory of Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, proposed a single exposure interferometric calibration method for large aperture diffractive lenses, which provides strong support for the engineering application of large aperture diffractive lenses. The relevant achievements are published in Optics Letters as "...

    2023-10-14
    Bekijk vertaling
  • Polyart Launches New Generation Polyart Laser Synthetic Paper

    Polyart has launched a new generation of Polyart laser printers, designed specifically for dry toner printing technology, with a completely improved coating formula and many exciting new advantages. These include reducing nationalism, moisture resistance, and better paper touch.Say hello to the good paper jogging on the printer output. More importantly, our new formula provides better scratch resi...

    2023-11-16
    Bekijk vertaling
  • Fundamentals of Next Generation Photonic Semiconductors: Small Lasers

    This week, an illustration was published on the cover of the international journal Science, showcasing a powerful mode-locked laser emitted from a miniature photonic semiconductor.A research team led by Alireza Marandi, a professor of electrical engineering and applied physics at the California Institute of Technology, has successfully developed a conventional mode-locked laser large enough to fit...

    2023-11-13
    Bekijk vertaling
  • New photon avalanche nanoparticles may usher in the next generation of optical computers

    A research team led by Lawrence Berkeley National Laboratory (Berkeley Lab), Columbia University, and Autonomous University of Madrid has successfully developed a novel optical computing material using photon avalanche nanoparticles. This breakthrough achievement was recently published in the journal Nature Photonics, paving the way for the manufacture of optical memory and transistors at the nano...

    02-28
    Bekijk vertaling
  • The market accounts for up to 70%! Meere is continuously expanding its market layout

    According to Korean media reports, Meere, a semiconductor and display equipment manufacturer from South Korea, is continuously expanding its presence in the high stack semiconductor market, including its HBM business.In fact, Meere itself is the world's top manufacturer of display edge grinding mechanisms, with a market share of up to 70%. It is based on its accumulation of display microfabricatio...

    2024-06-25
    Bekijk vertaling