Nederlands

Research has found that inorganic perovskite materials are easy to prepare and process, making them suitable for manufacturing lasers

220
2024-01-04 14:19:29
Bekijk vertaling

According to research from Busan National University, inorganic perovskite materials are easy to prepare and process, making them suitable for manufacturing lasers.
The perovskite of interest is CsPbBr3, which must form "nanosheets" within the specific structure invented by the Busan team to obtain sufficient laser gain.

It is not that the laser has been achieved, as the research project aims to characterize these nanosheets in terms of gain, temperature, and other parameters to provide data for designing future lasers.

According to the university, the team "achieved enhanced signal amplification in nanosheets through unique waveguide patterns, thereby enhancing gain and thermal stability.". These advances have had a wide-ranging impact on the applications of lasers, sensors, and solar cells, and may also affect areas such as environmental monitoring, industrial processes, and healthcare.

Under appropriate conditions, CsPbBr3 spontaneously forms atomic thick squares at around 150nm across the solution. Atomic level fine dust - quantum dots - are another form that can spontaneously form, but so far they have not provided sufficient gain for lasers.

Using micro imprinting lithography technology, waveguides were formed on a 20 x 20mm polyurethane acrylic substrate - a series of 20 μ M wide, 20 μ A long parallel channel with a depth of m, separated by 20 μ M thick wall.
These channels are filled with CsPbBr3 precursor solution and carefully wiped multiple times with a blade to evenly dose each channel.

The subsequent drying left a polycrystalline nanosheet at the bottom of each channel, which can be used for optical analysis - this is the expertise of the Busan Laboratory: the Department of Optoelectronics and Cogno Electromechanical Engineering.

"Perovskite nanosheets have properties that make them valuable for various applications," the university said. Their achievements have overcome the shortcomings of CsPbBr3 quantum dots, as their gain is essentially limited due to the short decay time of population inversion.

As part of the results, researchers created a new metric - "gain profile" - which describes the relationship between gain, spectral energy, and stripe length, and is "very convenient for analyzing local gain changes," according to the university.

The excitation and temperature dependence of the gain profile were measured, and the increase in gain and thermal stability of the polyurethane acrylate waveguide on the nanosheets was quantified.

"This enhancement is attributed to the improvement of optical constraints and heat dissipation, which is promoted by two-dimensional centroid constrained excitons and local states caused by uneven sheet thickness and defect states," said Pusan.

The collaboration between Busan National University and Oxford University in South Korea led to the publication of research results in the journal Optics: Science and Applications, titled "Enhancing perovskite nanosheets through patterned waveguides: excitation and temperature dependence of gain saturation.".

Source: Laser Net



Gerelateerde aanbevelingen
  • WVU engineers develop laser systems to protect space assets from the impact of Earth orbit debris

    The research from the University of West Virginia has been rewarded, as debris scattered in planetary orbits that pose a threat to spacecraft and satellites may be pushed away from potential collision paths by a coordinated space laser network.Hang Woon Lee, director of the Space Systems Operations Research Laboratory at the University of West Virginia, said that artificial debris dumps, including...

    2023-10-10
    Bekijk vertaling
  • Coherent lasers will help expand the scale of fusion tokamaks

    Coherent company's excimer lasers can be more widely used in fusion reactor applications, after the US based photonics giant signed a "letter of intent" with Japan's Faraday 1867 Holdings.Faraday 1867, headquartered in Kanagawa Prefecture, is said to have become the world's leading manufacturer of high-temperature superconducting (HTS) tape through its subsidiary Faraday Japan factory.This tape is...

    2023-10-11
    Bekijk vertaling
  • The construction of China's first attosecond laser device in Dongguan provides strong impetus for breakthroughs in multiple major fundamental scientific issues such as quantum computing

    On October 3rd, the 2023 Nobel Prize in Physics was announced, recognizing scientists who have studied attosecond physics, marking the beginning of the attosecond era for humanity.At present, China's first attosecond laser device, the "Advanced attosecond Laser Facility", is being prepared and built in Dongguan, Guangdong, providing strong impetus for breakthroughs in multiple major basic scientif...

    2023-10-07
    Bekijk vertaling
  • Lidar: Entering the Golden Age of Fission Growth

    With the global transition of autonomous driving from L2 to L3+, in the battle between LiDAR and pure visual perception routes, LiDAR is redefining the industry landscape at an astonishing pace of technological evolution and quietly building a new industrial ecosystem in the era of intelligent travel. Before the end-to-end model of autonomous driving became mainstream, there were many discussion...

    03-21
    Bekijk vertaling
  • TDK introduces a new gold-wire-bonded optional NTC thermistor for laser diode temperature measurement

    TDK Corporation (TSE: 6762) announced the introduction of the new NTCWS series of NTC thermistors with gold wire bonding. These bonding NTC thermistors can be installed in packages via gold wire bonding to enable high precision temperature detection of laser diodes (LD) for optical communication. The series will begin mass production in September 2023.The use of LD devices in optical communication...

    2023-09-08
    Bekijk vertaling