Nederlands

Allocate 10 billion US dollars! New York State to Build NA Extreme UV Lithography Center

215
2023-12-15 13:57:53
Bekijk vertaling

On December 11th local time, New York State announced a partnership with companies such as IBM, Micron, Applied Materials, and Tokyo Electronics to jointly invest $10 billion to expand the Albany NanoTech Complex in New York State, ultimately transforming it into a high numerical aperture extreme ultraviolet (NA EUV) lithography center to support the development of the world's most complex and powerful semiconductors.

This new factory, covering an area of 50000 square feet, will begin construction in 2024. A $10 billion investment is expected to help build North America's first and only publicly owned high numerical aperture extreme ultraviolet (NA EUV) lithography center.

It is reported that the new factory is expected to further expand in the future, which will encourage growth in future partners and support new initiatives such as the National Semiconductor Technology Center, the National Advanced Packaging and Manufacturing Program, and the Department of Defense's Microelectronics Sharing Program.

High numerical aperture extreme ultraviolet (NA EUV) lithography technology is the key to the manufacturing of next-generation (2nm and below) cutting-edge process chips. The collaboration between New York State and major semiconductor companies in the United States and Japan to establish the High-NA EUV semiconductor research and development center is mainly aimed at helping local American manufacturers further enhance their design and manufacturing capabilities in the field of cutting-edge semiconductor processes. They hope to obtain financial support through the Chip Act. State government officials have also provided incentives for these manufacturing facilities.

The statement shows that NY Create, a non-profit organization responsible for coordinating the construction of the facility, is expected to use $1 billion in state government funds to purchase TWINSCAN EXE: 5200 lithography equipment from ASML. Once the device is installed, relevant partners will be able to start researching the next generation of chip manufacturing. The plan will create 700 jobs and bring in at least $9 billion in private investment.

According to the plan, NY CREATES will purchase and install high numerical aperture extreme ultraviolet (NA EUV) lithography tools designed and manufactured by ASML. The instrument is equipped with a technology in which the path in the laser etching circuit exceeds the ultraviolet spectrum on a micro scale. Ten years ago, this process was the first to etch channels for 7-nanometer and 5-nanometer chip processes, and currently has the potential to develop and produce chips with nodes smaller than 2 nanometers - as early as 2021, IBM overcame this obstacle.

The EUV machines currently used in the market and industry are unable to generate the resolution required for sub 2nm nodes, in order to facilitate large-scale production and make them into chips. According to IBM, although current machines can provide the necessary level of accuracy, they require three to four EUV light exposures instead of one exposure. The increase in high NA can create larger optical devices and support printing higher resolution patterns on wafers.

Although researchers need to consider the issue of shallower focusing depth caused by increased aperture, IBM and its partners believe that this technology can drive the adoption of more efficient chips in the near future.
In terms of talent, the plan also includes collaborating with State University of New York to support and build talent development channels.

Source: OFweek

Gerelateerde aanbevelingen
  • Polish and Taiwan, China scientists are committed to new 3D printing dental implants

    Researchers from Wroclaw University of Technology and Taipei University of Technology in China are developing dental implants made from 3D printed ceramic structures connected to metal cores. Due to the use of biodegradable magnesium, bone tissue will gradually grow into such implants."The result will be a composite implant that can replace human teeth. Its scaffold is made of aluminum oxide...

    2024-04-17
    Bekijk vertaling
  • Additive manufacturing of free-form optical devices for space use

    A group of researchers and companies are using the iLAuNCH Trailblazer program to develop and identify new optical manufacturing processes and materials for space flight applications, and demonstrating them in space cameras.The University of South Australia, together with SMR Australia and VPG Innovation, will utilize an emerging optical manufacturing technology called freeform optics, which is no...

    2023-12-04
    Bekijk vertaling
  • Valeo SCALA 3 LiDAR won the "Vehicle Technology and Advanced Mobile Mobility" Innovation Award at the 2024 CES Consumer Electronics Exhibition

    The SCALA 3 LiDAR (Laser Detection and Ranging System), the third generation LiDAR scanner from Valeo, won the "Vehicle Technology and Advanced Mobile Mobility" Innovation Award at the 2024 CES Consumer Electronics Exhibition.The first and second generation Fareo LiDARs SCALA 1 and SCALA 2 have achieved autonomous driving in traffic congestion situations. The third-generation LiDAR SCALA 3 has sig...

    2023-11-22
    Bekijk vertaling
  • Automated methods for background estimation in laser spectroscopy

    A new automated method for spectral background estimation in laser spectroscopy ensures the accuracy of quantitative analysis with minimal human intervention.When using laser-induced breakdown spectroscopy in spectral analysis, scientists may encounter various obstacles. The most common challenge faced by scientists when conducting elemental analysis is to optimize the interaction between the lase...

    2023-11-24
    Bekijk vertaling
  • The Key Role of Laser Pointing Stability in the Application of Lithography Systems

    Lithography is one of the core processes in semiconductor manufacturing, and extreme ultraviolet lithography technology, as a new generation lithography technology, is also in a rapid development stage. The basic principle is to use photoresist (also known as photoresist) to form corrosion resistance due to photochemical reactions after being photosensitive, and to engrave the patterns on the mask...

    2024-07-02
    Bekijk vertaling