Nederlands

Laser additive manufacturing: monitoring during defect occurrence

684
2023-12-06 14:23:50
Bekijk vertaling

Researchers at the Federal Institute of Technology in Lausanne have resolved the long-standing debate surrounding laser additive manufacturing processes through a groundbreaking defect detection method.

The development of laser additive manufacturing is often hindered by unexpected defects. Traditional monitoring methods, such as thermal imaging and machine learning algorithms, have shown significant limitations. They often overlook or misunderstand defects, making precision manufacturing elusive and excluding this technology from important industries such as aviation and automotive manufacturing.

But what if defects can be detected in real-time based on the sound differences and irregular sounds emitted by the printer during the perfect printing process? So far, the prospect of detecting these defects in this way is considered unreliable. However, researchers from the Thermomechanical Metallurgy Laboratory at the Federal Institute of Technology in Lausanne have successfully challenged this hypothesis.

Professor Roland Log é, the head of the laboratory, said, "There has been controversy over the feasibility and effectiveness of acoustic monitoring in laser based additive manufacturing. Our research not only confirms its relevance, but also emphasizes its advantages over traditional methods.".

This study is crucial for the industrial sector as it introduces a breakthrough and cost-effective solution for monitoring and improving the quality of products manufactured through laser powder bed melting.

Dr. Milad Hamidi Nasab, Chief Researcher, stated that the synergistic effect of synchrotron X-ray imaging and acoustic recording provides real-time insights into the LPBF process, helping to detect defects that may endanger product integrity. In an era of constant pursuit of efficiency, accuracy, and waste reduction in various industries, these innovations not only save a lot of costs, but also improve the reliability and safety of manufactured products.

How does LPBF manufacturing work?
LPBF is a cutting-edge method for reshaping metal manufacturing. Essentially, it uses high-intensity lasers to carefully melt tiny metal powders, layer by layer creating detailed 3D metal structures. Treating LPBF as a metallic version of traditional 3D printers adds a certain degree of complexity.

It is not melted plastic, but uses a layer of small microscopic metal powder, whose size can range from the thickness of human hair to fine salt particles. The laser moves on this layer, melting specific patterns according to the digital blueprint. This technology can produce customized complex parts with minimal excess, such as lattice structures or unique geometric shapes. However, this promising approach is not without challenges.

When laser interacts with metal powder to form a so-called molten pool, it will fluctuate between the liquid phase, gas phase, and solid phase. Sometimes, the process may fluctuate due to variables such as the angle of the laser or specific geometric properties of the powder or part. These situations, known as "inter regime instability," sometimes lead to a shift between two melting methods, known as "conduction" and "lockhole" systems.

In an unstable lockhole state, when the molten powder pool is drilled deeper than expected, it will generate pores, ultimately leading to structural defects in the final product. In order to facilitate the measurement of the width and depth of the melt pool in X-ray images, the Image Analysis Center of the Imaging Center at the Federal Institute of Technology in Lausanne has developed a method that makes it easier to visualize small changes related to liquid metals, as well as a tool for annotating the geometry of the melt pool.

Use sound to detect these defects
In a joint venture with the Paul Scherrer Institute and the Swiss Federal Laboratory for Materials Science and Technology, the EPFL team has developed an experimental design that combines operational X-ray imaging experiments with acoustic emission measurements.

The experiment was conducted on the TOMCAT beam line of PSI Swiss Light Source, using a small LPBF printer developed by Dr. Steven Van Petegem's team. The combination with the ultra sensitive microphone located in the printing room can accurately locate significant changes in acoustic signals during state transitions, thereby directly identifying defects in the manufacturing process.

A crucial moment in this study was the introduction of adaptive filtering technology by Empa's signal processing expert Giulio Masinelli. "This filtering method," Masinelli emphasized, "enables us to distinguish the relationship between defects and accompanying acoustic features with unparalleled clarity.".

Unlike typical machine learning algorithms, machine learning algorithms excel at extracting patterns from statistical data, but are typically customized for specific scenarios. This approach provides a broader understanding of the physics of melting states while providing excellent temporal and spatial accuracy.

Through this study, the Federal Institute of Technology in Lausanne has contributed valuable insights to the field of laser additive manufacturing. These findings have significant implications for potential industrial applications, particularly in fields such as aerospace and precision engineering. This study consolidates Switzerland's reputation in meticulous craftsmanship and manufacturing accuracy, emphasizing the need for consistent manufacturing technology.

In addition, it also has the potential for early detection and correction of defects, thereby improving product quality. Professor Log é concluded, "This study paves the way for a better understanding and improvement of manufacturing processes, and in the long run, it will ultimately lead to higher product reliability.".
The research results are published in the journal Nature Communications.

Source: Laser Net

Gerelateerde aanbevelingen
  • An optical display technology based on mechanical optical mechanism

    The optical properties of afterglow luminescent particles in mechanical quenching and mechanical luminescence have aroused great interest in various technological applications. However, for specific photon applications, clearer explanations are needed for these unusual events.Recently, scientists from Pohang University of Science and Technology have designed an optical display technology with ALP ...

    2024-03-12
    Bekijk vertaling
  • Tiny yet Powerful: How Lasers on Chips Change the Game Rules of Photonics

    Chip level ultrafast mode-locked laser based on nanophotonic lithium niobate.Researchers have created a compact mode-locked laser integrated into a nanophotonic platform, capable of generating high-power and ultrafast optical pulses. The breakthrough in miniaturization of MLL technology can significantly expand the application of photonics.Innovation in mode-locked laser technologyTo improve the t...

    2023-12-27
    Bekijk vertaling
  • Xi'an Institute of Optics and Fine Mechanics has made significant progress in attosecond imaging research

    Recently, the Xi'an Institute of Optics and Fine Mechanics of the Chinese Academy of Sciences has made significant progress in attosecond imaging research, achieving high-resolution imaging of ultra wide spectrum light sources. The related results were published in the journal Photonics Research under the title "Snapshot coherent diffraction imaging across ultra wideband spectra".Figure 1. Demonst...

    2024-10-26
    Bekijk vertaling
  • The Science Island team has made breakthroughs in high pulse energy mid infrared fiber transmission

    Recently, the Jiang Haihe Research Group of the Health Institute of the Chinese Academy of Sciences Hefei Institute of Materia Medica made important progress in the research of the high-energy pulsed laser transmission system in the mid infrared band, and designed a 78 μ The 6-hole microstructure anti resonant hollow core fiber (AR-HCF) with a larger core diameter achieved efficient transmissio...

    2024-03-23
    Bekijk vertaling
  • New super-resolution microscopy imaging technology: rapid imaging of neurons

    The research group led by Wang Kai from the Center for Excellence in Brain Science and Intelligent Technology of the Chinese Academy of Sciences has published a research paper titled "Super solution imaging of fast morphological dynamics of neurons in eating animals" online in Nature Methods. The team has developed a new type of super-resolution microscopy imaging technology, which solves the two ...

    2024-12-04
    Bekijk vertaling