Nederlands

Researchers have created the first organic semiconductor laser to operate without the need for a separate light source

873
2023-11-29 13:54:45
Bekijk vertaling

OLED is located at the top and is formed by an organic layer between the contacts. Apply voltage to it, inject charge and generate light, which in turn excites organic laser. Organic lasers contain a grating that can generate feedback and diffract some of the laser out of the structure.

Organic laser
Researchers have created the first organic semiconductor laser to operate without the need for a separate light source, which has been proven to be extremely challenging.
The new all electric laser is more compact than previous versions and operates in the visible light region of the electromagnetic spectrum, making it suitable for sensing, sensing, and spectroscopic applications.

A laser works by reflecting light back and forth, typically in an optical cavity containing a gain medium placed between two mirrors. When light is reflected between mirrors, the gain medium amplifies it, stimulating more light emission and producing coherent beams with a very narrow spectral range.

In 1992, the first organic laser was introduced. However, it uses a separate light source to drive its gain medium, which makes the design complex and limits its application. Since then, researchers have been trying to find a way to manufacture an organic laser that only uses an electric field to drive it.

Due to the work of Kou Yoshida and his colleagues at the University of St. Andrews in Scotland, this 30-year exploration has just reached its destination.

world record
There are two main strategies for designing electrically driven organic lasers. The first method is to place electrical contacts in an organic gain medium and inject charges through them. However, this is difficult to achieve because the injected charge absorbs light through the material's emission spectrum through the so-called triplet state. In addition, the contacts themselves also absorb light.
That's why Yoshida chose another approach: keeping charges, triplets, and contacts at a distance from the gain medium of the laser in space.

This is not an easy task either, as it means manufacturing a pulsed blue organic light-emitting diode with a light output intensity that should break world records, allowing it to trigger gain media and save additional light sources.

"In order to manufacture this device, we initially manufactured OLED and laser cavities separately, and then transferred OLED to the surface of the laser waveguide," Professor Ifor Samuel explained. The careful integration of these two parts is crucial for the gain medium to obtain strong electroluminescence generated inside OLED.

In order to complete the project, the team used diffraction gratings on thin film lasers to provide distributed feedback of laser emission in the thin film plane, while also diffracting the outgoing laser beam from the surface.

A slowly accelerating technology
Organic semiconductor devices are widely considered a "slow" technology because the charge mobility in organic materials is usually several orders of magnitude lower than that in crystalline silicon or III-V group semiconductors. But this innovation may start to change this perception and expand the scope of use of organic lasers.

As for the application, researchers claim that the new all electric organic semiconductor laser can be easily integrated into medical devices used in offices - various light based detection and spectroscopy devices for diagnosing diseases or monitoring symptoms.

Source: Laser Net

Gerelateerde aanbevelingen
  • Short pulse lasers in the form of chips use the so-called mode coupling principle

    Nowadays, lasers that emit extremely short flashes can be found in many research laboratories, but they usually fill the entire room. Physicists have now successfully reduced this laser to the size of a computer chip. As they reported in the journal Science, their research can lay the foundation for extremely compact detectors.A team led by Qiushi Guo from the California Institute of Technology in...

    2023-11-10
    Bekijk vertaling
  • The global laser technology market is expected to reach 29.5 billion US dollars by 2029

    Recently, Markets And Markets released a five-year assessment report on the global laser industry. According to the report, the global laser technology market is expected to reach $20 billion by 2024 and is projected to reach $29.5 billion by 2029, with a compound annual growth rate of 8.0% during the forecast period.Global Laser Technology Market ForecastThe reasons for market growth include: the...

    2024-07-25
    Bekijk vertaling
  • Leica Measurement System Development First Person Laser Scanner

    Leica Geosystems, a subsidiary of Hexagon, has developed Leica BLK2GO PULSE, its first person laser scanner, which combines LiDAR sensor technology with the original Leica BLK2GO shape. The technology will be released in early 2024.The scanner provides users with a fast, simple, and intuitive first person scanning method that can be controlled through a smartphone and provides real-time full color...

    2023-10-19
    Bekijk vertaling
  • TAU Systems upgrades the University of Texas desktop laser to a peak power of 40 terawatts

    TAU Systems, a manufacturer of ultra fast compact laser plasma accelerators, announced today that it has successfully upgraded the existing desktop terawatt laser (UT 3) at the University of Texas to a new and improved performance that provides power for compact particle accelerators. The upgraded UT 3 driver laser can now generate ultra short pulses with a peak power of 40 terawatts.This upgrade ...

    2023-08-21
    Bekijk vertaling
  • Laser Photonics cleaning technology simplifies the removal of biofilms in industrial environments

    Laser Photonics Corporation is a leading global industrial developer of CleanTech laser systems for laser cleaning and other material applications, highlighting a key application of its CleanTech laser system.Wayne Tupuola, CEO of Laser Photonics, commented, "Our CleanTech laser cleaning system provides an efficient and cost-effective method for removing biofilms from various materials and surface...

    2023-09-20
    Bekijk vertaling