Nederlands

Commitment to achieving 100 times the speed of on-chip lasers

373
2023-11-13 14:43:08
Bekijk vertaling

Although lasers are common in daily life, their applications go far beyond the scope of light shows and barcode reading. They play a crucial role in telecommunications, computer science, and research in biology, chemistry, and physics. In the latter field, lasers that can emit extremely short pulses are particularly useful, approximately one trillionth of a second or less.

By operating these lasers on such a time scale, researchers can study the rapid occurrence of physical and chemical phenomena.
For example, the generation or breaking of molecular bonds during chemical reactions, or the movement of electrons within a material. These ultra short pulses are also widely used in imaging applications because they can have extremely high peak intensity but low average power, thereby avoiding heating or even burning samples such as biological tissues.

A New Method for Manufacturing Ultrafast Lasers
In an article in the journal Science, Alireza Marandi, an assistant professor of electrical engineering and applied physics at the California Institute of Technology, described a new method developed by his laboratory for manufacturing this type of laser on photonic chips, called a mode-locked laser.

Lasers are manufactured using nanoscale components that can be integrated into optical based circuits similar to those found in modern electronics based on electrical integrated circuits.

Ultra fast laser for research
This type of ultrafast laser is so important for research that this year's Nobel Prize in Physics was awarded to three scientists in recognition of their development of lasers that generate attosecond pulses.

On the other hand, these lasers are currently very expensive and bulky, and Alireza Marandi pointed out that he is exploring ways to achieve this time scale on chips that can be several orders of magnitude cheaper and smaller in size, with the aim of developing affordable and deployable ultrafast optonics technologies.

in summary
Ultra fast lasers are crucial for research and industry, but their cost and size remain the main obstacles. The work of Professor Marandi and his team aims to overcome these challenges by developing mode-locked lasers on photonic chips, making these technologies easier to obtain and more affordable. Their research can pave the way for new applications in various fields, from basic research to industry.

To better understand
What is ultrafast laser?
An ultrafast laser is a type of laser that can emit extremely short pulses, approximately one trillionth of a second (one picosecond) or shorter. These lasers are particularly useful in biological, chemical, and physical research and can be used to study rapidly occurring phenomena.

Why is ultrafast lasers important for research?
Ultra fast lasers enable researchers to study extremely fast physical and chemical phenomena, such as the generation or breaking of molecular bonds during chemical reactions, or the movement of electrons within materials. They are also widely used in imaging applications because they can have extremely high peak intensity but low average power, thereby avoiding heating or even burning samples such as biological tissues.

What is a mode-locked laser?
A mode-locked laser is an ultra fast laser that can be manufactured on photonic chips. These lasers are made of nanoscale components that can be integrated into optical based circuits similar to those found in modern electronic products based on electrical integrated circuits.

What are the advantages of ultrafast lasers on chips?
Compared with traditional ultrafast lasers, on-chip ultrafast lasers can be several orders of magnitude cheaper and have a smaller volume, making them easier to use in research and industry. In addition, they can also be combined with other components to build complete ultrafast photonics systems on integrated circuits.

What are the future goals of ultrafast laser chips?
The goal of the researchers is to improve this technology so that it can operate at shorter time scales and higher peak power. The goal is to achieve 50 femtoseconds, which will be 100 times higher than the current device that generates 4.8 picosecond pulses.

Source: Laser Network

Gerelateerde aanbevelingen
  • University of Science and Technology of China realizes quantum elliptical polarization imaging

    Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the research of quantum elliptical polarization imaging. The research group of Professor Shi Baosen and Associate Professor Zhou Zhiyuan combined high-quality polarization entangled light sources with classical polarization imaging technology to observe the bir...

    04-14
    Bekijk vertaling
  • 253 million US dollars! This Canadian medical fiber optic sensor manufacturer will be acquired

    Recently, Haemantics Corporation, which focuses on providing innovative medical solutions with proprietary optical technology, announced that the company has reached a final agreement. According to the agreement, Haemonics will acquire all outstanding shares of Canadian fiber optic sensor manufacturer OpSens for CAD 2.90 per share.This is an all cash transaction with a fully diluted equity value o...

    2023-10-18
    Bekijk vertaling
  • Nature Photonics reports a new type of nonlinear optical crystal - all band phase matched crystal

    Short wave ultraviolet all solid-state coherent light sources have the characteristics of strong photon energy, practicality and precision, and high spectral resolution. They have significant application value in laser precision processing, information communication, cutting-edge science, and aerospace fields.The core component of obtaining all solid-state shortwave ultraviolet lasers is nonlinear...

    2023-10-07
    Bekijk vertaling
  • The largest ultra fast laser production base in the northwest has been completed and put into operation

    As a representative enterprise in the field of ultrafast lasers, Zhuolai Laser has always performed outstandingly in the market, not only possessing dual technologies of "ultrafast+ultra strong", but also covering a remarkable range of technical routes in China. In 2022, the company completed a financing of 200 million yuan.Recently, Zhuolai Laser announced to the public that its Xi'an subsidiary ...

    2024-04-28
    Bekijk vertaling
  • Osram has received over 300 million euros in German investment to develop next-generation optoelectronic semiconductor technology

    Recently, ams Osram, a developer of smart sensors and transmitters, announced that it expects to receive over 300 million euros in funding from the German Federal Government and the Free State of Bavaria over the next five years.This funding is aimed at promoting Osram's development of the next generation optoelectronic semiconductor technology in Regensburg, Germany. The IPCEI funding in this bat...

    2023-09-25
    Bekijk vertaling