Nederlands

High Resolution Visible Light Imaging of Large Aperture Telescopes

922
2023-10-31 11:45:28
Bekijk vertaling

The deformable mirror used in adaptive optics can instantly correct the static wavefront aberrations and atmospheric turbulence wavefront disturbances of the optical system by changing its surface. This enables the optical system to automatically adapt to changes in the environment and maintain optimal performance. It is widely used in high-resolution astronomical observations, laser atmospheric transmission, and biomedical imaging. Traditional astronomical adaptive optical systems are usually installed on a platform independent of telescopes, mainly composed of special deformable mirrors, tilt mirrors, wavefront sensors, and relay optical components. Due to the presence of a large number of optical components and the long optical path, the system has problems such as large volume, large static aberration, and low light energy utilization. Therefore, this architecture is not conducive to measuring and correcting the wavefront of weak stars at high spatial and temporal frequencies.

(a) Sketch of PDSM-241. (b) Actuator layout (light aperture: 270mm). (c) The self correcting aberration of PDSM-241. Image source: Opto Electronic Advances (2023). DOI: 10.29026/oa.2023.230039

Deformable secondary mirror (DSM), which refers to the transformation of a telescope's secondary mirror into a deformable mirror for wavefront correction, was first proposed by American astronomer Beckers as a means of addressing these defects. This concept enables deep integration of telescopes and adaptive optical systems. Subsequently, many well-known large aperture ground-based observatories such as MMT, LBT, Magellan, VLT, etc. have successfully utilized Voice Coil Deformable Secondary Mirror (VCDSM), demonstrating the feasibility of DSM technology. At the same time, the Institute of Optoelectronics Technology has initiated research on piezoelectric DSM (PDSM) technology. The researchers subsequently developed the first 73 unit PDSM prototype and successfully installed it on a 1.8 meter telescope for astronomical observation in 2016.

Practice has proven that PDSM technology is practical for astronomical observations. Compared to VCDSM, PDSM is more compact and does not require any additional cooling systems, internal control electronics, or actuator position sensors. This article introduces the new 241 unit PDSM developed by the Institute of Optoelectronics Technology and its application on the 1.8-meter adaptive telescope at the Lijiang Tianwen Observatory, supported by a key project of the National Natural Science Foundation of China. The PDSM-241 is equipped with a quartz reflector with a diameter of 320 millimeters and a light aperture of approximately 270 millimeters. It is driven by 241 piezoelectric actuators to change its surface for wavefront correction. The self corrected image difference of the PDSM-241 is approximately 10 nm.

The structure of the Lijiang 1.8-meter adaptive telescope adopts a combined wavefront correction device, which combines PDSM-241 with a six dimensional displacement station to achieve long range, high-precision tracking and high-order wavefront aberration correction. The main mirror of the 1.8 meter telescope reflects the distorted stellar beam due to atmospheric turbulence, and then corrects tilt and higher-order wavefront aberrations through PDSM-241 and a six dimensional displacement station. Finally, the third mirror reflects the beam of light onto the wavefront sensor and high-resolution imaging camera at the Nasmyth focal point. The Lijiang 1.8-meter adaptive telescope obtained high-resolution stellar images using efficient closed-loop correction of PDSM-241. The visible light R-band (center wavelength 640 nm) image is displayed, with an imaging resolution of 1.25 times the diffraction limit and an imaging Strehl ratio (SR) close to 0.5.

This research aims to meet the needs of high integration and resolution for large aperture optical telescopes, and has made remarkable progress in the development of high-performance piezoelectric deformable secondary mirrors and astronomical observation applications. This further simplifies the structure of large aperture high-resolution optical telescopes, improves imaging resolution, and has significant application value in astronomy. The research results have been published in the journal Opto Electronic Advances.

Source: China Optical Journal Network





Gerelateerde aanbevelingen
  • Ultrafast laser technology continues to reach new heights

    Ultra short pulse lasers, such as femtosecond lasers, are increasingly becoming easy-to-use plug and play devices suitable for a wide range of industrial and biomedical applications. Fifteen years ago, the volume of these lasers was still very large, requiring daily cleaning of optical components, regular maintenance of cooling water, and continuous optimization of laser parameters. Nowada...

    2023-11-06
    Bekijk vertaling
  • Creating Laser Sensors with Soap Bubbles: Discovery of Game Changing Rules

    Scientists from the University of Ljubljana in Slovenia have made groundbreaking discoveries and discovered a new innovative application of soap bubbles. By transforming these seemingly simple entities into laser sensors, they unleash the potential to detect electric fields and pressures. This extraordinary development has opened the door to various possibilities.Researchers at the University of L...

    2023-11-20
    Bekijk vertaling
  • TriLite has partnered with AMS OSram to develop AR smart glasses displays

    TriLite has announced a technical collaboration with ams OSRAM, a global leader in smart sensors and transmitters. Ams Osram will supply its sub-assembled RGB laser diode to "light up" TriLite's Trixel® 3 laser beam scanner (LBS), the world's smallest AR smart glasses projection display.The award-winning Trixel® 3 LBS offers breakthrough compactness and light weight, as well as a bright an...

    2023-09-06
    Bekijk vertaling
  • Professor Wu Dong's team at the University of Science and Technology of China created a "dancing microrobot" using femtosecond laser composite materials.

    It was learned from the University of Science and Technology of China that the team of Professor Wu Dong of the Micro and Nano Engineering Laboratory of the school proposed a femtosecond laser two-in-one multi-material processing strategy, manufactured a micromechanical joint composed of temperature-sensitive hydrogel and metal nanoparticles, and then developed a multi-joint humanoid micromachine ...

    2023-08-11
    Bekijk vertaling
  • Lithuanian and Japanese researchers develop silver nanolaser

    Recently, researchers from Kaunas University of Technology (KTU) in Lithuania and the Tsukuba National Institute of Materials Science in Ibaraki, Japan, have collaborated to successfully develop a new type of nanolaser based on silver nanocubes.Although its structure is small and can only be observed through high-power microscopes, its potential application prospects are broad, and the research te...

    2024-12-24
    Bekijk vertaling