Nederlands

Laser direct writing technology for preparing micrometer scale heatable graphene de icing and anti icing surfaces broadens the preparation method of new de icing and anti icing devices

536
2023-10-16 11:28:42
Bekijk vertaling

Research background
In transportation, industrial production, and practical life, icing often brings great troubles, and the most serious is that during the flight of an aircraft, key components once frozen will seriously affect navigation safety.

The traditional passive deicing and anti icing strategies for aircraft, such as mechanical vibration and anti freezing liquids, have problems such as incomplete deicing effect, environmental pollution, and reduced skin life; However, the common pneumatic and thermal active deicing and anti icing strategies on aircraft face problems such as inaccurate control and increased energy consumption. Although the new electric thermal active deicing and anti icing system has advantages such as high efficiency, good reliability, and easy control, the drawbacks of high electrical energy consumption have always limited its development. Currently, the industry urgently needs stable, efficient, and reliable new deicing and anti icing technologies.

Research Highlights 
This article focuses on the development bottleneck of high energy consumption in electric active deicing and anti icing, combined with the cutting-edge anti icing technology of hydrophobic materials in the current industry. With the help of Laser Induced Graphene (LIG) technology, which can simultaneously achieve graphene generation and precision patterning design, the common 10.6 μ By directly irradiating polyimide film (PI) with m CO2 laser and adjusting the scanning speed of the laser (50-125 mm/s), a micron scale grooved graphene surface with both hydrophobicity/superhydrophobicity and electrothermal function was successfully prepared under atmospheric pressure, expanding the preparation methods of new deicing and anti icing devices.

The basic characterization and performance testing of hydrophobic graphene surfaces revealed for the first time a significant linear negative correlation between the width of the grooves and scanning speed, which is of great significance for precise micro adjustment in laser manufacturing.

Low temperature icing tests and stability tests have shown that graphene surfaces have the potential to be reused for long-term hydrophobic and delayed icing applications.

Joule thermal performance tests have shown that graphene surfaces can achieve an electric heating effect of 45.5 ℃ -151.3 ℃ under low DC voltage supply (3 V-7 V), and can achieve surface defrosting and deicing functions (such as defrosting within 5 seconds and deicing within 90 seconds under 5V power supply) in an environment of -23 ℃.

The above research content and results demonstrate that laser induced graphene technology can efficiently and quickly convert polymer surfaces with hydrophilic wetting properties into micron scale hydrophobic graphene surfaces with hydrophobic wetting properties, providing a new approach and preparation method for preparing multifunctional deicing and anti icing surfaces with both hydrophobic and electrothermal functions.

The corresponding results were published in the Coatings journal under the title of "Fabric of Micron Structured Headable Graphene Hydrophobic Surfaces for Decking and Anti Icing by Laser Direct Writing". The first author of the article was Li Shichen, a 2021 master's student at the School of Avionics and Electrical Engineering, China Civil Aviation University, The co corresponding authors are Associate Professor Zhong Mian from the School of Avionics and Electrical Engineering, China Civil Aviation Flight Academy, and Professor He Qiang from the School of Civil Aviation Safety Engineering.

Source: Sohu


Gerelateerde aanbevelingen
  • Germany and the United States jointly build a $150 million laser equipment laboratory for studying inertial fusion energy and high energy density physics

    German laser Fusion developer Marvel Fusion said it will partner with Colorado State University (CSU) on a new $150 million laser equipment lab to study inertial fusion energy and high energy density physics."It will be home to one of the most powerful laser facilities in the world and an international center for laser fusion energy and high energy density physics research," the company said in a ...

    2023-08-10
    Bekijk vertaling
  • Scientists use glass to create femtosecond lasers

    Image source: Federal Institute of Technology in Lausanne, SwitzerlandScience and Technology Daily, Beijing, September 27th (Reporter Zhang Jiaxin) Commercial femtosecond lasers are manufactured by placing optical components and their mounting bases on a substrate, which requires strict alignment of optical components. So, is it possible to manufacture femtosecond lasers entirely from glas...

    2023-09-28
    Bekijk vertaling
  • Set a new world record! Optical crystals as thin as cicada wings increase energy efficiency by over a hundred times

    On quartz sheets, the angular rhombic boron nitride crystals with a thickness of only 1 to 3 microns are as thin as cicada wings, but their energy efficiency is 100 to 10000 times higher than traditional optical crystals. At the opening ceremony of the 2024 Zhongguancun Forum Annual Conference held on April 25th, the world's thinnest known optical crystal was listed as one of the top ten technolog...

    2024-04-26
    Bekijk vertaling
  • The 3D toy printer is easy to use and safe, perfect for children and adults

    Children (and adults) like to collect toys, but what if they can make them themselves? This is exactly the focus of the Toybox 3D printer luxury bundle. This 3D printer for children's toys incorporates innovative technology into simplified products, making it very suitable for young people. Do you want to have your own? The cost of this 3D toy printer has been reduced to $348.99.Generally speaking...

    2024-06-05
    Bekijk vertaling
  • IPG Japan office and technical center officially opened

    Recently, IPG Photonics, a leading company in the global fiber laser field, announced the official opening of its new office and central technology center in Japan, marking a solid step in the technology giant's strategic deployment in the Asia Pacific region.The opening of this new office not only demonstrates IPG Photonics' high regard for Japan and the entire Asia Pacific market, but also indic...

    2024-07-15
    Bekijk vertaling