Nederlands

High Power Laser Assists Scientists in Discovering a New Stage of High Density and Ultra High Temperature Ice

199
2023-10-11 14:38:26
Bekijk vertaling

As is well known, the outer planets of our solar system, Uranus and Neptune, are gas giants rich in water. The extreme pressure on these planets is 2 million times that of the Earth's atmosphere. Their interiors are also as hot as the surface of the sun. Under these conditions, water exhibits a strange high-density ice phase.

Researchers have recently observed one of the stages, called Ice XIX, which is the first to use high-power lasers to reproduce necessary extreme conditions. The Neptune model shows the potential depth of the newly discovered body centered cubic superion ice XIX. It can explain Neptune's multipolar magnetic field (purple), which is due to an increase in conductivity and tilt relative to the axis of rotation (green).

Image source: SLAC National Accelerator Laboratory
Researchers measured the Ice XIX structure under extreme conditions using a linear accelerator coherent light source (a groundbreaking X-ray laser device) and found that oxygen atoms are arranged in a body centered cubic structure, while hydrogen atoms move freely like fluids, greatly improving conductivity. Their paper is published in the Science Report.

Voyager 2 is a solar system exploration spacecraft launched by NASA in 1977, which measured the extremely unusual magnetic field around Uranus and Neptune. Scientists believe that the strange states of so-called superionic ice are a possible explanation, as the conductivity of these states increases. This work proves the existence of the previously undiscovered Ice XIX phase. It indicates that the phase can be formed at the correct depth and helps to interpret the Voyager 2 magnetic data.

Water is a common compound in the solar system and essential for life. It exhibits an exceptionally complex pressure temperature phase diagram, with 18 crystalline ice phases identified. There is no more important dense ice phase than the interior of gas giants such as Uranus and Neptune. Scientists speculate that the complex magnetic fields of these planets are generated by the strange high-pressure state of water ice with superionic properties. However, under these extreme conditions, the structure of ice is difficult to measure.

Researchers have found the first direct evidence for the use of extreme condition instruments using linear accelerator coherent light sources, ultra fast X-ray free electron lasers, and Department of Energy (DOE) science office user facilities to detect the new stage of high-density ultra-hot water ice in laser driven dynamic compression processes.

At 200GPa (2 million atmospheres) and 5000K (8500 ° F), this new high-pressure ice phase (known as Ice XIX) has a body centered cubic (BCC) lattice structure. Although other structures are theoretically stable under these conditions, the BCC structure of Ice XIX will increase the conductivity inside the ice giant much deeper than previously thought.

These results provide an important and convincing origin for the multipolar magnetic fields measured by the Voyager 2 spacecraft on Uranus and Neptune.

Source: Ofweek


Gerelateerde aanbevelingen
  • China University of Science and Technology has made progress in the study of the regulatory mechanism of thermally induced delayed fluorescence

    Recently, Professor Zhou Meng's research group at the University of Science and Technology of China collaborated with Professor Fu Hongbing's team at the Capital Normal University to reveal the mechanism by which aggregation effects regulate the luminescent properties of thermally delayed fluorescent materials. The research findings, titled "Aggregation Enhanced Thermally Activated Delayed Fluoros...

    2024-06-28
    Bekijk vertaling
  • New nanophotonic circuits demonstrate the potential of quantum networks

    The Purdue University team in the United States has captured alkali metal atoms (cesium) in integrated photonic circuits, which can serve as transistors for photons (the smallest energy unit of light). These captured atoms demonstrate for the first time the potential of cold atom integrated nanophotonic circuits to construct quantum networks. The research results were published in the latest issue...

    2024-08-14
    Bekijk vertaling
  • Scientists plan to build particle accelerator to power giant chip factory

    Scientists are exploring new ways to get around limitations on the lithography machines used to produce microchips. Researchers are using particle accelerators to create new laser sources that could lay the foundation for the future of semiconductor manufacturing.Plans are underway to build a particle accelerator with a circumference between 100 and 150 meters (328 and 492 feet), about the size of...

    2023-09-25
    Bekijk vertaling
  • Germany and the United States jointly build a $150 million laser equipment laboratory for studying inertial fusion energy and high energy density physics

    German laser Fusion developer Marvel Fusion said it will partner with Colorado State University (CSU) on a new $150 million laser equipment lab to study inertial fusion energy and high energy density physics."It will be home to one of the most powerful laser facilities in the world and an international center for laser fusion energy and high energy density physics research," the company said in a ...

    2023-08-10
    Bekijk vertaling
  • New photonic nanocavities open up new fields of optical confinement

    In a significant leap in quantum nanophotonics, a team of European and Israeli physicists introduced a new type of polarized cavity and redefined the limits of light confinement. This groundbreaking work was detailed in a study published yesterday in Natural Materials, showcasing an unconventional photon confinement method that overcomes the traditional limitations of nanophotonics.For a long time...

    2024-02-12
    Bekijk vertaling