Nederlands

Uncovering the Secrets of Nature: A New Generation of X-ray Lasers Reveals the Mystery of Atoms

439
2023-09-25 14:48:44
Bekijk vertaling

As a breakthrough leap in scientific exploration, the new generation of powerful X-ray lasers is now targeting the fastest and most basic processes in nature. Their mission: to uncover the complex atomic arrangement that drives these phenomena, providing unprecedented insights into chemical reactions, electronic behavior in materials, and the mysteries of the natural world.

Unlocking the precise mechanisms by which atoms participate in chemical reactions and electronic navigation materials can provide valuable knowledge for scientists seeking to replicate the extraordinary feats and efficiency of nature. From simulating the energy conversion process in plants to utilizing the unique characteristics of minerals to provide power for our electronic products, it has a wide range of applications and is transformative.

Professor Matthias Kling of Photonics at Stanford University affirmed the importance of this effort. He said in an interview with Axios, "We will be able to conduct experiments that were previously impossible. This information can be obtained through X-rays similar to lasers, and cannot be obtained through any other means.

The spotlight shines on the world's most powerful X-ray laser, marking a historic milestone recently. The Linear Accelerator Coherent Light Source (LCLS-II) X-ray Free Electron Laser (XFEL) at the SLAC National Accelerator Laboratory launched its first pulse last week, heralding a new era of scientific exploration.

The miracle of this upgraded version can release nearly 1 million X-ray flashes per second, which is an astonishing leap compared to its predecessor, with a power increase of nearly 8000 times. SLAC, with the support of Stanford University and the support of the Department of Energy, is the driving force behind this breakthrough progress.

The clever mechanism behind this scientific miracle involves pushing electrons to speeds close to the speed of light. Once in motion, these electrons will be cleverly manipulated to emit X-rays.

These high-energy X-ray pulses can be cleverly focused on tiny targets, providing a delicate and detailed window for the molecular world. These snapshots, combined together, can produce vivid movie sequences that showcase the complex dance of molecular interactions.

Breaking through the boundaries of cold
The originality of LCLS-II goes beyond that. The instrument uses superconductors and is cooled to a chilling 2 Kelvin temperature, which is even colder than the vast outer space. This cold environment is conducive to electrons accelerating with unparalleled accuracy and control along a 2-kilometer long tunnel.

Furthermore, LCLS-II's ambition goes beyond producing "low energy" X-rays. Plans are underway to enhance the instrument's capabilities to produce "hard" X-rays. The wavelengths of these hard X-rays are comparable to the distance between two bonded atoms, which is expected to reveal the complex details of atomic bonds and their angles between them.

In the intersection of cutting-edge technology and scientific curiosity, LCLS-II has opened up new fields for us to explore and control the atomic complexity of the natural world. Every X-ray flash beckons us one step closer to unraveling the deepest mysteries of nature.

Source: Laser Network

Gerelateerde aanbevelingen
  • American scientists use light technology to control hypersonic jet engines

    According to the website "interesting engineering" on July 29th, a new study funded by the National Aeronautics and Space Administration (NASA) has revealed for the first time that the airflow in supersonic combustion jet engines can be controlled through optical sensors. This study was conducted by researchers from the School of Engineering and Applied Sciences at the University of Virginia.When ...

    2024-07-31
    Bekijk vertaling
  • The Innovation Road of Laser Welding Automation Production Line for New Energy Vehicle Motor stators

    With the increasing global attention to environmental protection and sustainability, new energy vehicles have become an important trend in the automotive industry. In this context, the production method of the core component of new energy vehicles - the motor stator - has also undergone profound changes. Welding, as a key manufacturing process, has brought disruptive innovation to the manufacturin...

    2024-02-28
    Bekijk vertaling
  • The Asia Photonics Expo will be held in Singapore from February 26th to 28th, 2025

    The Asia Photonics Expo (APE), as an internationally leading comprehensive brand promotion and business negotiation platform for optoelectronics, will be grandly held from February 26 to 28, 2025 at the L1 exhibition hall of the Sands Expo&Convention Centre in Singapore. As the top event in the field of optoelectronics, APE Asia Optoelectronics Expo will focus on cutting-edge innovative techno...

    01-03
    Bekijk vertaling
  • New laser technology unlocks deuterium release in aluminum layers

    In a recent study, quadrupole mass spectrometry was used to measure the number of deuterium atoms in the aluminum layer.A recent study led by the National Institute of Laser, Plasma, and Radiation Physics and Sasa Alexandra Yehia Alexe from the University of Bucharest explored the details of laser induced ablation and laser induced desorption techniques using a 1053 nm laser source. The study was ...

    2023-11-25
    Bekijk vertaling
  • Progress in research on neodymium doped strontium aluminate lanthanum magnesium laser crystals by Shanghai Optics and Machinery Institute

    Recently, the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the research of Nd: ASL (Sr0.7Nd0.05La0.25Mg0.3Al22.7O19) laser crystals, and the related achievements were published in Infrared Physics&Technology under the title of "Tunable laser operations on Nd doped cont...

    2024-03-19
    Bekijk vertaling