Nederlands

Deere Laser's self-developed laser induced sintering technology, with LIF equipment orders exceeding 100GW in production capacity

478
2023-09-18 14:53:09
Bekijk vertaling

Recently, Deere Laser received mass production orders and bid confirmations for laser induced sintering (LIF) equipment from multiple top customers, with a cumulative production capacity exceeding 100GW.

As an innovative technology iteratively developed by the company based on its own LIR technology and LIA technology, LIF technology has won industry recognition for its excellent efficiency improvement performance. After intensive testing and validation by multiple top customers, LIF technology will accelerate the introduction into mass production and assist customers in upgrading their TOPCon battery production line.

In recent years, the global efficient solar cell production capacity has been continuously released, and new technologies that can improve efficiency and reduce costs for various types of solar cell processing have attracted attention. As a leading photovoltaic equipment enterprise, Deere Laser has successfully developed multiple new laser applications such as PERC+, TOPCon+, XBC+, and HJT+, effectively assisting in the continuous upgrading of high-efficiency solar cell technology.

Laser Induced Firing (LIF) technology is a new iterative innovation process developed by Emperor Laser, following the independent research and development of Laser Induced Regeneration (LIR) and Laser Induced Annealing (LIA), A new processing technology that uses laser technology to induce sintering of solar cells.

LIF technology achieves rapid sintering and molding of materials by precisely controlling the laser beam, stacking powder or filamentous materials layer by layer and simultaneously irradiating them with laser. This technology has been widely applied in many fields due to its high efficiency, precision, and flexibility.

In the field of photovoltaics, laser induced sintering technology has the following advantages:
(1) Improving battery efficiency: By achieving precise connection of battery cells, energy consumption and heat loss are reduced, thereby improving the overall efficiency of photovoltaic modules.
(2) Improving product reliability: The precise control of laser induced sintering technology can effectively avoid welding defects and improve the reliability and service life of photovoltaic modules.
(3) Reducing production costs: The rapid prototyping characteristics of laser induced sintering technology can significantly shorten production cycles, reduce production costs, and improve production efficiency.

This technology was developed by Deere Laser in collaboration with industry clients and completed process validation on TOPCon batteries. The results show that this technology can effectively improve the photoelectric conversion efficiency of battery cells, with a gain of over 0.2%.


In TOPCon, IBC, and HJT processes, Tyr Laser has a brand new laser technology coverage. In terms of TOPCon battery technology, as of the disclosure date of the 2023 semi annual report, a total of over 450GW of new boron doped orders have been signed this year. Based on the accelerated breakthrough of the company's LIF technology, the company's TOPCon orders are expected to accelerate growth.

In terms of BC battery technology, the company's laser technology continues to receive orders this year, including orders for N-type and P-type processes. Some orders can refer to the daily operation major contract announcement in early June this year.
In terms of HJT battery technology, the company's LIA laser repair technology continues to receive mass production orders from European customers this year.
In terms of components, the company is developing a new laser welding process that can simplify production processes, reduce damage to battery cells, and improve welding quality. Currently, it has delivered a pilot line to customers.

In addition to the photovoltaic field, in the display panel industry, the company has carried out research and development and prototype trial production of laser repair, laser peeling, and other processes. In the semiconductor wafer manufacturing and packaging field, Deere Laser has carried out research and development of IGBT/SiC laser annealing, wafer laser cleaning/thinning, wafer excitation steganography, and other related technologies; In the field of consumer electronics, the company has carried out research and development of TGV laser microporous technology and completed small batch order delivery.

Source: OFweek

Gerelateerde aanbevelingen
  • Laser beam combined with metal foam to produce the brightest X-ray

    According to the Physicists' Network, scientists from Lawrence Livermore National Laboratory (LLNL) in the United States ingeniously combined the high-power laser emitted by the National Ignition Facility (NIF) with the ultra light metal foam to create the brightest X-ray ever. These ultra bright high-energy X-rays play an important role in many research fields, including imaging of extremely dens...

    01-18
    Bekijk vertaling
  • Rachel's latest laser welding and cutting machine processes thicker materials at lightning speed

    Rachel is a pioneer in laser technology solutions and is pleased to announce a significant update to its laser welding and cutting machines. These enhanced features aim to provide customers with faster turnaround time and higher accuracy, reaffirming Rachel Corporation's commitment to providing cutting-edge laser cutting and welding solutions to meet the needs of different industries.Lache Company...

    2024-04-07
    Bekijk vertaling
  • Tailoring 'hollow' hydrogen molecule generation with two-color, bicircularly polarized laser pulses

    Rydberg atoms and molecules are characterized by having one or more electrons in highly excited bound states. Such atoms and molecules are said to be in “Rydberg states” and are also called “hollow” atoms and molecules. Rydberg states are useful for studying various phenomena arising in intense light–matter interaction that involve electronic excitation with an intens...

    2023-09-16
    Bekijk vertaling
  • Observation of nanoscale behavior of light driven polymers using combination microscopy technology

    Expanding our scientific understanding often boils down to observing what is happening as closely as possible. Now, researchers from Japan have observed the nanoscale behavior of azo polymer films and triggered them with lasers.In a study published in Nano Express last month, researchers at Osaka University used a combination of cutting-edge scanning high-speed atomic force microscopy and optical ...

    2024-03-12
    Bekijk vertaling
  • Romania Center launches the world's most powerful laser

    Are you ready? The signal is out! "In the control room of a research center in Romania, engineer Antonio Toma has activated the world's most powerful laser, which is expected to make revolutionary progress in various fields from the health sector to space. The laser located in the center near the Romanian capital Bucharest is operated by the French company Thales and utilizes the invention of Nobe...

    2024-04-01
    Bekijk vertaling