Nederlands

Deere Laser's self-developed laser induced sintering technology, with LIF equipment orders exceeding 100GW in production capacity

181
2023-09-18 14:53:09
Bekijk vertaling

Recently, Deere Laser received mass production orders and bid confirmations for laser induced sintering (LIF) equipment from multiple top customers, with a cumulative production capacity exceeding 100GW.

As an innovative technology iteratively developed by the company based on its own LIR technology and LIA technology, LIF technology has won industry recognition for its excellent efficiency improvement performance. After intensive testing and validation by multiple top customers, LIF technology will accelerate the introduction into mass production and assist customers in upgrading their TOPCon battery production line.

In recent years, the global efficient solar cell production capacity has been continuously released, and new technologies that can improve efficiency and reduce costs for various types of solar cell processing have attracted attention. As a leading photovoltaic equipment enterprise, Deere Laser has successfully developed multiple new laser applications such as PERC+, TOPCon+, XBC+, and HJT+, effectively assisting in the continuous upgrading of high-efficiency solar cell technology.

Laser Induced Firing (LIF) technology is a new iterative innovation process developed by Emperor Laser, following the independent research and development of Laser Induced Regeneration (LIR) and Laser Induced Annealing (LIA), A new processing technology that uses laser technology to induce sintering of solar cells.

LIF technology achieves rapid sintering and molding of materials by precisely controlling the laser beam, stacking powder or filamentous materials layer by layer and simultaneously irradiating them with laser. This technology has been widely applied in many fields due to its high efficiency, precision, and flexibility.

In the field of photovoltaics, laser induced sintering technology has the following advantages:
(1) Improving battery efficiency: By achieving precise connection of battery cells, energy consumption and heat loss are reduced, thereby improving the overall efficiency of photovoltaic modules.
(2) Improving product reliability: The precise control of laser induced sintering technology can effectively avoid welding defects and improve the reliability and service life of photovoltaic modules.
(3) Reducing production costs: The rapid prototyping characteristics of laser induced sintering technology can significantly shorten production cycles, reduce production costs, and improve production efficiency.

This technology was developed by Deere Laser in collaboration with industry clients and completed process validation on TOPCon batteries. The results show that this technology can effectively improve the photoelectric conversion efficiency of battery cells, with a gain of over 0.2%.


In TOPCon, IBC, and HJT processes, Tyr Laser has a brand new laser technology coverage. In terms of TOPCon battery technology, as of the disclosure date of the 2023 semi annual report, a total of over 450GW of new boron doped orders have been signed this year. Based on the accelerated breakthrough of the company's LIF technology, the company's TOPCon orders are expected to accelerate growth.

In terms of BC battery technology, the company's laser technology continues to receive orders this year, including orders for N-type and P-type processes. Some orders can refer to the daily operation major contract announcement in early June this year.
In terms of HJT battery technology, the company's LIA laser repair technology continues to receive mass production orders from European customers this year.
In terms of components, the company is developing a new laser welding process that can simplify production processes, reduce damage to battery cells, and improve welding quality. Currently, it has delivered a pilot line to customers.

In addition to the photovoltaic field, in the display panel industry, the company has carried out research and development and prototype trial production of laser repair, laser peeling, and other processes. In the semiconductor wafer manufacturing and packaging field, Deere Laser has carried out research and development of IGBT/SiC laser annealing, wafer laser cleaning/thinning, wafer excitation steganography, and other related technologies; In the field of consumer electronics, the company has carried out research and development of TGV laser microporous technology and completed small batch order delivery.

Source: OFweek

Gerelateerde aanbevelingen
  • Implementation of 20W high-power fiber optic frequency comb by the Institute of Physics, Chinese Academy of Sciences

    High power optical frequency combs play a crucial role in nonlinear precision spectroscopy, extreme ultraviolet optical frequency comb generation, nuclear atomic clock research, and other fields. Fiber optic femtosecond lasers are the preferred solution for achieving high power optical frequency combs due to their simple structure, stable performance, and easy amplification.However, due to the una...

    2023-10-11
    Bekijk vertaling
  • Laser printing on fallen leaves can produce sensors for medical and laboratory use

    The manufacturing of sensors through 3D printing combines speed, design freedom, and the possibility of using waste as a substrate. In the circular economy model, various results have been achieved, and typically discarded residues are used as low-cost resources. A research team in Brazil has proposed a highly creative solution that involves printing electrochemical sensors on fallen leaves. The t...

    2024-05-16
    Bekijk vertaling
  • New discoveries bring progress in photon calculation

    International researchers led by Philip Walther from the University of Vienna have made significant breakthroughs in the field of quantum technology, successfully demonstrating quantum interference between multiple single photons using a new resource-saving platform. This work, published in Science Advances, represents a significant advancement in the field of quantum computing and paves the way f...

    2024-04-27
    Bekijk vertaling
  • An efficient femtosecond pulse amplification technique for extracting the maximum stored energy in fiber laser amplifiers

    The well-known journal Optica published a paper in November 2024 titled "Near complete extraction of maximum stored energy from large core fibers using coherent pulse stacking amplification of femtosecond pulses"The authors of the paper were the University of Michigan, Lawrence Berkeley National Laboratory, Peking University, and the German Institute of Synchrotron Radiation.The specific technique...

    2024-11-13
    Bekijk vertaling
  • Redefining optical limits: Engineers discover enhanced nonlinear optical properties in 2D materials

    Recently, according to a paper published in Nature Communications titled "Phonoenhanced nonlinearities in hexagonal boron nitride," engineers from Columbia University collaborated with theoretical experts from the Max Planck Institute of Material Structure and Dynamics to discover that pairing lasers with lattice vibrations can improve the nonlinear optical properties of layered two-dimensional ma...

    2024-02-23
    Bekijk vertaling