Nederlands

ICFO launches its 13th subsidiary Shinephi for interferometric imaging

87
2025-08-11 16:12:43
Bekijk vertaling

Barcelona-based photonics research center ICFO has announced the creation of its 13th Spin-off company, Shinephi. The official launch of the company was jointly made at the end of July by Dr. Roland Terborg (CEO and co-founder), Dr. Iris Cusini (CTO and co-founder) and ICREA Prof. at ICFO Valerio Pruneri (Technology Advisor and co-founder), accompanied by Dr. Silvia Carrasco, Vice Director of Innovation, Sponsored Research and Public Engagement of ICFO, and Dr. Emilià Pola, Executive Director at ICREA.

 



The Shinephi launch team


Shinephi was developed as a result of more than a decade of research conducted by the research group led by ICREA Prof. at ICFO Valerio Pruneri. The research team was trying to find solutions and tools that could be fast, sensitive, stable and versatile for imaging solutions because they repeatedly encountered the fundamental limitations of existing technologies.

Several existing metrology solutions in the market were often not sensitive and fast enough for industrial applications related to nanofabrication and the semiconductor industry. More importantly, they proved to be very difficult to integrate easily into existing systems or production lines because they tended to be typically bulky systems.

During many years of research, technology development and business incubation within ICFO’s KTT Launchpad, the team was able to develop an innovative technology that combined high sensitivity and speed with easy integration, called Lateral-shear Interferometric Microscopy, a novel form of a common-path interferometer, which has proven to outperform optical profilometers and atomic force microscopes.

Unlike traditional interferometers, which had been often bulky and sensitive to vibrations, this approach showed to be inherently stable. The goal was to transform standard microscopes into powerful metrology tools using a simple, camera-like add-on fulfilling Shinephi’s goal to make the invisible visible, easily and effectively.

Making advanced optical metrology accessible

The startup’s mission is to provide advanced optical metrology and make it accessible to companies and laboratories in the material science and semiconductor sectors, enabling them to take control over their fabrication processes, overcome the limitations of current standards and see their samples in a new light.

The founding of the company represents a significant milestone, according to CEO Roland Terborg. He said, “after more than ten years of research, technology development and business incubation at ICFO, it is amazing to finally launch Shinephi. We are taking all that scientific knowledge and turning it into a real solution for big industry problems. This is a huge moment for us, officially moving from the lab to the market.”

Shinephi’s CTO, Iris Cusini, who has a background in electronic engineering and software design for imaging systems, added, “The most exciting part is seeing our technology actually working for our first clients. Now that we have officially launched, we’re going from a cool prototype to a real product.”

Shinephi’s LIM technology and its wide-ranging applications will be essential across industries where precise measurement of microscopic height or refractive index variations are significant. Silvia Carrasco commented, “we are proud to see deep-tech innovations developed at ICFO starting the rocky path to impact society. The launch of Shinephi is a clear example of how cutting-edge photonics research, in the hands of driven ICFOnians, can evolve into impactful industrial solutions that address industrial challenges in nanofabrication and semiconductor manufacturing.”

Valerio Pruneri said, “the technology developed by the spin-off will allow foundries in the semiconductor industry, including producers of photonic integrated circuits, to measure chips and wafers with unprecedented precision and speed.”

Terborg explained the crucial role that ICFO has played in the development of Shinephi’s technology, from the research carried out within Pruneri’s group to the IP guidance and industrial connections from the KTT team: “ICFO has provided the ideal ecosystem for a deep-tech venture like ours to grow. We are optimistic about the future and eager to see the discoveries our clients will make with our technology.”

Source: optics.org

Gerelateerde aanbevelingen
  • Investing nearly £ 520 million, this synchrotron light source in the UK will be upgraded

    Recently, the UK's national synchrotron "Diamond Light Source" announced an investment of nearly £ 520 million ($648.3 million) to implement three new flagship beam lines and upgrade existing beam lines. This comprehensive upgrade will be delivered by 2030.The Department for Science, Innovation, and Technology and the biomedical charity Wellcome jointly approved the facility upgrade project,...

    2023-09-27
    Bekijk vertaling
  • Researchers have created the first organic semiconductor laser that can be operated without the need for a separate light source

    Researchers at the University of St. Andrews in Scotland have manufactured the first organic semiconductor laser to operate without the need for a separate light source - which has proven to be extremely challenging. The new all electric driven laser is more compact than previous devices and operates in the visible light region of the electromagnetic spectrum. Therefore, its developers stated that...

    2023-11-15
    Bekijk vertaling
  • Automated methods for background estimation in laser spectroscopy

    A new automated method for spectral background estimation in laser spectroscopy ensures the accuracy of quantitative analysis with minimal human intervention.When using laser-induced breakdown spectroscopy in spectral analysis, scientists may encounter various obstacles. The most common challenge faced by scientists when conducting elemental analysis is to optimize the interaction between the lase...

    2023-11-24
    Bekijk vertaling
  • The research team has developed a mechanical luminescent touch screen that can work underwater

    The optical properties of afterglow luminescent particles in mechanical luminescence and mechanical quenching have attracted much attention in various technological applications. A group of researchers from Pohang University of Science and Technology has attracted attention by developing an optical display technology with ALP that can write and erase messages underwater.The team is composed of Pro...

    2024-03-08
    Bekijk vertaling
  • 20W High Power Fiber Optic Frequency Comb with 10 to 19 Power Outside Ring Frequency Stability

    High power optical frequency combs play a crucial role in nonlinear precision spectroscopy, extreme ultraviolet optical frequency comb generation, nuclear atomic clock research, and other fields. Fiber optic femtosecond lasers are the preferred solution for achieving high power optical frequency combs due to their simple structure, stable performance, and easy amplification. However, due to the un...

    2023-10-20
    Bekijk vertaling