Nederlands

Harvard University and University of Vienna invented tunable laser chips

794
2025-07-16 14:42:00
Bekijk vertaling

Researchers at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Vienna University of Technology (TU Wien) have invented a new type of tunable semiconductor laser that shows smooth, reliable, wide-range wavelength tuning in a simple, chip-sized design.
Tunable lasers are integral to many technologies, from high-speed telecommunications to medical diagnostics to safety inspections of gas pipelines. Yet laser technology faces many tradeoffs – for example, lasers that emit across a wide range of wavelengths sacrifice the accuracy of each wavelength. They can also depend on complicated and expensive designs because they commonly require moving parts.

Artist’s illustration of the new tunable ring laser.

The Harvard and Vienna developers new device could “one day replace many types of tunable lasers in a smaller, more cost-effective package.”

The associated research has been published in Optica. It was co-led by Federico Capasso, the Robert L. Wallace Professor of Applied Physics and Vinton Hayes Senior Research Fellow in Electrical Engineering at SEAS, and Prof. Benedikt Schwarz at TU Wien.

‘More commercially relevant wavelengths’

The researchers have initially demonstrated a laser that emits light in the mid-infrared wavelength range because that is where quantum cascade lasers, upon which their architecture is based, typically emit. “The versatility of this new platform means that similar lasers can be fabricated at more commercially relevant wavelengths, such as for telecommunications applications, for medical diagnostics, or for any laser that emits in the visible spectrum of light,” said Capasso, who co-invented the quantum cascade laser in 1994.

The new laser consists of multiple tiny ring-shaped lasers, each a slightly different size, and all connected to the same waveguide. Each ring emits light of a different wavelength, and by adjusting electric current input, the laser can smoothly tune between different wavelengths. The clever and compact design ensures the laser emits only one wavelength at a time, remains stable even in harsh environments, and can be easily scaled. The rings function either one at a time or all together to make a stronger beam.

“By adjusting the size of the ring, we can effectively target any line we want, and any lasing frequency we want,” said co-lead author Theodore Letsou, an MIT graduate student and research fellow in Capasso’s lab at Harvard. “All the light from every single laser gets coupled through the same waveguide and is formed into the same beam. This is quite powerful, because we can extend the tuning range of typical semiconductor lasers, and we can target individual wavelengths using a different ring radius.”

“What’s really nice about our laser is the simplicity of fabrication,” added co-lead author Johannes Fuchsberger, a graduate student at TU Wien, where the team fabricated the devices using the cleanroom facilities permanently provided by the school’s Center for Micro and Nanostructures. “We have no mechanically movable parts and an easy fabrication scheme that results in a small footprint.”

The new ring laser could possibly replace current technologies for different types of tunable semiconductor lasers that each have strengths and drawbacks depending on the application. For example, distributed feedback lasers make smooth and accurate beams and are therefore used in telecommunications fiber to send optical signals long distances, but their tuning range is narrow.

External cavity lasers, on the other hand, have broader tuning ranges but more complex designs and moving parts, which makes their laser lines tend to skip around. These are commonly used in gas sensors that test for leaks in pipelines, because they can detect gases like methane and carbon dioxide which absorb light at distinct wavelengths.

Source: optics.org

Gerelateerde aanbevelingen
  • French researchers develop spiral lenses with optical vortex effects

    As humans stand at the forefront of a new era of space exploration, the National Laboratory of the International Space Station is taking the lead in carrying out a groundbreaking initiative that may completely change the way we understand and utilize space for research and development. In a recent development, Northrop Grumman's 20th commercial supply service mission has become an innovative light...

    2024-02-17
    Bekijk vertaling
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong laser and matter, electrons with short pulse width and high energy are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite a wide range of ultrafast electromagnetic radiation, as well...

    2024-04-30
    Bekijk vertaling
  • Germany has developed a fast, accurate, and wear-resistant laser drilling CFRP process

    Recently, scientists from the Hanover Laser Center (LZH) in Germany announced the successful development of an automated laser drilling process that can promote the processing of carbon fiber reinforced plastics (CFRP). They stated that this is particularly valuable in applications such as lightweight structures and sound insulation.Composite materials such as carbon fiber reinforced plastics (CFR...

    2024-03-06
    Bekijk vertaling
  • Electron beam welding process for thick steel plate of turbine at Aachen Institute of Technology in Germany

    Researchers from the Welding Research Institute of Aachen University of Technology in Germany reported on the development of a stable welding process for electron beam welding of thick plates used in the construction of offshore wind turbines. The relevant research results were published in Materials Science and Engineering Technology under the title "Development of a robust welding process for el...

    2024-07-09
    Bekijk vertaling
  • The Science Island team has made breakthroughs in high pulse energy mid infrared fiber transmission

    Recently, the Jiang Haihe Research Group of the Health Institute of the Chinese Academy of Sciences Hefei Institute of Materia Medica made important progress in the research of the high-energy pulsed laser transmission system in the mid infrared band, and designed a 78 μ The 6-hole microstructure anti resonant hollow core fiber (AR-HCF) with a larger core diameter achieved efficient transmissio...

    2024-03-23
    Bekijk vertaling