Nederlands

Safran Group believes that additive manufacturing is playing an increasingly important role in engines

10
2025-06-18 10:31:54
Bekijk vertaling

Safran Group showcased a 3-foot diameter turbine aft casing manufactured using additive manufacturing technology under the RISE technology program at the Paris Air Show in recent years. This component is Safran's largest additive manufacturing component to date, indicating the increasingly widespread application of additive manufacturing in the design and manufacturing of turbofan engines.

 



In early June, Delphine Derud, Vice President of Engineering at Safran Aircraft Engines, stated that compared to traditional cast parts, the mass of the turbine rear casing has been reduced by one-third, and the production cycle has been shortened from 18 months to three weeks. The ultimate goal is to compress it to one week or even shorter in order to incorporate design changes in the later stages of development.

Francois Xavier Foubert, CEO of Safran Additive Manufacturing Park, pointed out that although melting metal through additive manufacturing is not the most economical way, if eliminating welding can bring benefits, such as significant weight reduction or achieving more complex configurations, integrating more work, or making the overall design lighter, then this technology is meaningful; Traditional manufacturing requires 3-10 pounds of metal to produce a 1-pound component, while additive manufacturing only requires 1.5 pounds, greatly improving material utilization; The current additive manufacturing turbine casing requires almost no mechanical processing and can achieve "near net forming".

Safran Group has applied additive manufacturing to engine production, and currently has 14 components (made of aluminum, nickel based high-temperature alloys, or titanium) in mass production. Fubel stated that 25% of additive manufacturing applications in RISE validation machines will represent the production standards for future engines. He predicts that additive manufacturing equipment will be able to produce larger parts: parts with a diameter of 2 meters can be manufactured by the early 2030s; Installing more high-power lasers on a single device can melt thicker layers of metal powder, thereby improving efficiency.

Fubel reminds designers that there are risks involved in developing new categories of metal powders. A single device is only compatible with one type of powder, and multiple types of metal powders require multiple devices. Given that each device is worth 3 to 5 million euros (3.4 to 5.7 million US dollars), manufacturers tend to control the number of devices, while also requiring a single device to support multiple component designs.

Fubel added that although additive manufacturing applications are expanding, other processes remain competitive. Due to its low cost, the casting process may be used to manufacture some structurally simpler components. Complex metallurgical techniques may be suitable for manufacturing single crystal components; The forging process may still be suitable for manufacturing high load components. Engine manufacturers can sometimes choose between these three processes. Eric Darbier, Executive Vice President and Chief Technology Officer of Safran, pointed out that "forging, casting, or additive manufacturing should be chosen with lower costs while ensuring autonomy and controllability." Although the mine cannot be relocated, the process of atomizing metal into powder can be localized. Airbus and Safran may request joint venture metal supplier Obert Duvall to construct titanium alloy atomization facilities.

Source: Yangtze River Delta G60 Laser Alliance

Gerelateerde aanbevelingen
  • Researchers have placed photon filters and modulators on standard chips for the first time

    Researchers at the University of Sydney combined photon filters and modulators on a single chip, enabling them to accurately detect signals on the broadband RF spectrum. This work brings photonic chips closer to one day, potentially replacing larger and more complex electronic RF chips in fiber optic networks.The Sydney team utilized stimulated Brillouin scattering technology, which involves conve...

    2023-12-26
    Bekijk vertaling
  • Implementing and studying non Hermitian topological physics using mode-locked lasers

    A mode-locked laser is an advanced laser that can generate very short optical pulses with durations ranging from femtoseconds to picoseconds. These lasers are widely used for studying ultrafast and nonlinear optical phenomena, but they have also been proven to be applicable to various technological applications.Researchers at the California Institute of Technology have recently been exploring the ...

    2024-03-27
    Bekijk vertaling
  • Overview of ultrafast laser micro nano manufacturing technology: material processing, surface/interface control, and device manufacturing

    Researchers from Tsinghua University have summarized the research on ultrafast laser micro nano manufacturing technology, including material processing, surface/interface control, and device manufacturing. The relevant review titled "A Review of Ultrafast Laser Micro/Nano Fabric: Material Processing, Surface/Interface Control, and Device Fabric" was published in Nano Research.Ultra fast laser proc...

    2024-08-06
    Bekijk vertaling
  • Using laser welding technology to manufacture rotor shafts at the speed of light

    How can EMAG Laser Technology accelerate the production of critical powertrain components using its flagship product ELC 6 system?The rapid popularity of electric vehicles worldwide indicates that production planners must increase their efforts in producing key components of electric vehicles, particularly the rotor shaft. The importance of the rotor shaft as the core component for converting elec...

    2024-07-17
    Bekijk vertaling
  • Researchers improve laser behavior by tying laser knots

    Researchers have created a new type of laser that, despite environmental noise and manufacturing defects, still performs as expected. Technically speaking, researchers have created a topology, time, and mode-locked laser. This study has the potential to improve sensors and computing hardware.A mode-locked laser emits light with regular pulses instead of a continuous beam. Pulses can be very counta...

    2024-03-07
    Bekijk vertaling