한국어

French laser giant's profits decline, laser radar business restructuring

194
2024-10-09 13:54:03
번역 보기

Recently, Marvel Fusion, a pioneer in the field of laser fusion, successfully raised 62.8 million euros (approximately 70.3 million US dollars) in funding. This funding will provide strong impetus for its fusion technology demonstration on existing laser equipment and accelerate the comprehensive technology validation process at its facility in Colorado, with the goal of achieving this milestone by 2027.

 



This financing is led by HV Capital and has received support from several well-known investment institutions, including b2venture, Bayern Kapital, Deutsche Telekom, Earlybird, SPRIND, and Tengelmann Ventures. Of particular note is that Marvel Fusion has also been favored by the European Innovation Council, with a grant of 2.5 million euros and the prospect of receiving an additional equity investment of up to 15 million euros (pending approval), undoubtedly adding a significant amount to the company's financing journey.

In addition, Marvel Fusion is honored to have been selected for the accelerator program jointly launched by the European Innovation Council and the Small and Medium Enterprise Executive Agency, which aims to support the expansion of its fuel target production scale through a grant of 2.5 million euros and may introduce up to 15 million euros in equity investment as further assistance.

As one of the explorers in the field of inertial confinement fusion, Marvel Fusion's approach aligns with the advanced technology path of the US Department of Energy's National Ignition Facility (NIF), which has validated the net energy gain of laser nuclear fusion in 2022, setting an important milestone for the entire industry. However, Marvel Fusion, with its cutting-edge laser technology, is committed to improving the power and efficiency of lasers, surpassing the limitations of NIF based on old designs.

The company is partnering with Colorado State University to rapidly build a demonstration plant, with the core goal of validating its fusion technology competitiveness through two 100 joule laser systems. These lasers will accurately bombard nanostructured targets at ultra-high speeds (one billionth of a second per second), releasing high-energy positive ions through photon stripping, and triggering fusion reactions.

The hybrid fuel strategy chosen by Marvel Fusion (mainly composed of hydrogen and boron) demonstrates its flexibility and foresight in fuel selection. Moritz von der Linden emphasized that this strategy facilitates adjusting fuel combinations according to future technological developments.

Compared to the complex fuel particle preparation process of NIF (which requires gold lining wrapping and takes two weeks), Marvel Fusion's fuel and target design are more suitable for large-scale production. Its fuel remains solid at room temperature, easy to handle, and the target structure uses silicon material, greatly simplifying the production process and cost.

Even more exciting is that Marvel Fusion is able to efficiently produce nanoscale targets on standard 300mm wafers using mature semiconductor lithography technology, with each wafer capable of producing approximately 5000 targets and sizes controlled between 50 and 80 nanometers. This innovation not only reduces production costs, but also accelerates the pace of technology towards commercialization.

Looking ahead, the first prototype of Marvel Fusion is expected to be released between 2032 and 2033. The prototype will integrate hundreds of kilojoule level lasers, each capable of emitting about 10 times per second, marking another major breakthrough for the company in the field of laser fusion.

Source: OFweek

관련 추천
  • The estimated output value of the LiDAR market in 2029 is expected to reach 5.352 billion US dollars

    Market research firm TrendForce Consulting released an industry insight report today, stating that currently LiDAR is mainly used in the automotive market for passenger cars and unmanned taxis, while in the industrial market it supports applications such as robotics, factory automation, and logistics.The report points out that driven by Level 3 and more advanced auto drive system system and logist...

    01-22
    번역 보기
  • Enlightra and DESY Hamburg developed an improved and scalable comb laser

    Laser technology startup Enlightra collaborates with DESY Hamburg to develop and design more stable and efficient comb lasers. This work demonstrates a microresonator with programmable synthetic reflection, providing tailored injection feedback for driving lasers. This technology has significantly improved compared to traditional self injection locking technology and can be produced using standard...

    2024-01-26
    번역 보기
  • Hamamatsu Photonics completes construction of new factory area

    Recently, Hamamatsu Photonics in Japan completed the construction of a new building at Miyakoda Manufacturing Co., Ltd. in Hamami ku, Hamamatsu City. The completion ceremony was held on July 29th, and the factory will start full production in November 2024, increasing overall production capacity by 2.5 times.Source: Hamamatsu PhotonicsIt is reported that Hamamatsu Photonics focuses on the developm...

    2024-08-01
    번역 보기
  • Breakthrough in Light Manipulation: Revealing New Finite Barrier Bound States

    Exploring the propagation and localization of waves in various media has always been a core focus of optics and acoustics. Specifically, in photonics and phononics, scientists have been dedicated to understanding and controlling the behavior of light and sound waves in periodic media.Photonic crystals have unique bandgap characteristics, providing an excellent platform for studying wave propagatio...

    2024-03-25
    번역 보기
  • Progress has been made in the development of anti resonant hollow core fiber Raman probes with low background noise at Shanghai Optics and Machinery Institute

    Recently, the research team of the Special Glass and Fiber Research Center of the Advanced Laser and Optoelectronic Functional Materials Department of the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, aimed at the demand for in-situ detection of Raman signals, expanded the functions of the laboratory commercial Renishaw Invia confocal micro Raman spectrometer by usi...

    2024-05-22
    번역 보기