한국어

The wide application of laser plastic welding technology in the field of automobile manufacturing

807
2024-09-26 13:52:28
번역 보기

With the rapid development of society, people's demands for energy conservation, emission reduction, and safety in automobiles are increasing. Automobile manufacturers are seeking lightweight manufacturing processes for automobiles, changing traditional component packaging processes, and so on. Laser plastic welding technology has emerged, and below is a brief sharing of the application of plastic laser welding technology in the field of automotive manufacturing.


Diagram of Automotive Plastic Parts Products



A plastic finished product on a car may be made of multiple materials or components. To combine the various components, mechanical fasteners, adhesives, and welding processes can be used for processing. Among these three joining methods, mechanical fasteners can quickly connect the two components, but the leak proof function of the joint is poor, and local stress can easily cause separation between polymer materials; Adhesive can form seams with excellent leak proof function, but it is difficult to handle and has a slow curing speed. At the same time, when using adhesive bonding, there are high requirements for joint preparation procedures and surface cleanliness; The welding process has a better effect, producing adhesive and stable seams, with mechanical properties similar to the parent material, and a variety of welding forms. Different welding processes can be used according to different materials, sizes, and applications.

A plastic finished product on a car may be made of multiple materials or components. To combine the various components, mechanical fasteners, adhesives, and welding processes can be used for processing. Among these three joining methods, mechanical fasteners can quickly connect the two components, but the leak proof function of the joint is poor, and local stress can easily cause separation between polymer materials; Adhesive can form seams with excellent leak proof function, but it is difficult to handle and has a slow curing speed. At the same time, when using adhesive bonding, there are high requirements for joint preparation procedures and surface cleanliness; The welding process has a better effect, producing adhesive and stable seams, with mechanical properties similar to the parent material, and a variety of welding forms. Different welding processes can be used according to different materials, sizes, and applications.

Welding of plastic components
The so-called welding of plastic components refers to the use of heating to melt the surfaces of two thermoplastic components simultaneously, and to combine the two components into one under external force.

What are the welding processes for plastic parts
Plastic welding processes can be divided into two categories: one is mechanical mobile welding processes, including ultrasonic welding, friction welding, and vibration welding; The second is the external heating welding process, including hot plate welding, hot gas welding, and implant welding. According to different heating methods, it can also be divided into heating tool welding, induction welding, ultrasonic welding, high-frequency welding, hot plate welding, laser welding, vibration friction welding, infrared welding, hot pile welding, and hot air welding.

Plastic parts can be seen everywhere on the exterior, interior, functional, and structural components of modern vehicles. Replacing traditional metal materials with plastic has achieved a very outstanding weight reduction effect, which is of great significance for saving energy and reducing greenhouse gas emissions.

Replacing metal with plastic intake manifolds in automobiles can reduce mass by 40% to 60%, with a clear surface and low flow resistance, which can improve engine performance and play a positive role in improving combustion efficiency, reducing fuel consumption, and reducing vibration and noise. According to statistics, there are currently dozens of types of plastics used in automobiles, including polypropylene, polyethylene, polyurethane, polyvinyl chloride, ABS, nylon, and thermosetting composite materials. The average amount of plastic used per car accounts for 5% to 10% of the car's weight, and the requirements for lightweight, safety, and decorative features have also driven the progress of plastic laser welding technology in the automotive field.

At present, plastic laser welding technology has been successfully applied in the manufacturing industry of automotive bumpers, instrument panels and dashboards, brake lights, airbags, car toolboxes, car door panels, and other engine related components. With many traditional metal components starting to be replaced with plastics, such as intake manifolds, instrument pointers, radiator reinforcements, fuel tanks, and filters, there is a particularly good opportunity for the application and discussion of new technologies in the field of plastic welding. Low energy consumption, high-efficiency, non-toxic, and pollution-free welding equipment will become the trend of technological progress in automotive welding lines in the future.

Source: Yangtze River Delta Laser Alliance

관련 추천
  • How to choose between continuous and pulsed fiber lasers?

    Fiber laser, with its simple structure, low cost, high electro-optical conversion efficiency, and good output effect, has been increasing in proportion in industrial lasers year by year. According to statistics, fiber lasers accounted for 52.7% of the industrial laser market in 2020.According to the characteristics of the output beam, fiber lasers can be classified into two categories: continuous ...

    2023-12-20
    번역 보기
  • The Trends and Challenges of the Metal 3D Printing Industry in 2025

    In the past decade, metal 3D printing technology has experienced rapid development, from the initial production of orthopedic implants to the manufacturing of rocket boosters. This technology has become an indispensable part of multiple key industries. With the advancement of technology and the expansion of the market, we are witnessing the revival of electron beam melting (EBM) technology and the...

    01-21
    번역 보기
  • Fraunhofer ILT develops laser beam shaping platform to optimize PBF-LB process

    Recently, the German research institution Fraunhofer ILT team is collaborating with the Department of Optical Systems Technology (TOS) at RWTH Aachen University to develop a testing system aimed at studying complex laser beam profiles using a new platform. This platform can construct customized beam profiles for laser powder melting (PBF-LB) 3D printing, thereby improving part quality, process sta...

    2024-12-23
    번역 보기
  • STREAMLIGHT Upgrade TLR RM Light with Red or Green Laser

    Streamlight, a leading supplier of high-performance lighting and weapon lights/laser aiming equipment, has launched upgraded models of its TLR RM 1 and TLR RM 2 series of lights, each now equipped with an HPL face cap, providing ultra bright beams of up to 1000 lumens and an extended range of up to 22000 candela.The popular TLR RM 1 and TLR RM 2 models are equipped with red or green lasers, both o...

    2024-02-23
    번역 보기
  • Laser Photonics, the "dark horse" of laser cleaning, plans to build a new factory of nearly 50000 square meters in North America

    On July 2nd local time, Laser Photonics, the dark horse of laser cleaning, announced a major expansion plan: to build a modern new factory covering an area of 50000 square feet (approximately 4645.152 square meters) in Lake Mary, Florida, USA.This expansion marks a firm manifestation of Laser Photonics' confidence in the sustained growth of the North American and even global markets, and also sig...

    2024-07-04
    번역 보기