한국어

Using attosecond pulses to reveal new information about the photoelectric effect

824
2024-09-02 15:22:21
번역 보기

Scientists from the Stanford National Accelerator (SLAC) laboratory of the US Department of Energy have revealed new information about the photoelectric effect using attosecond pulses: the delay time of photoelectric emission is as long as 700 attosecond, far exceeding previous expectations. The latest research challenges existing theoretical models and helps to reveal the interactions between electrons more deeply, promoting the development of technologies such as semiconductors and solar cells. The relevant paper titled 'Attested delays in X-ray molecular ionization' was published in the latest issue of the journal Nature.

The photoelectric effect refers to the phenomenon in which photons interact with molecules or atoms on a metal surface when light is irradiated, causing the metal surface to release electrons. This effect laid the theoretical foundation for quantum mechanics, but the so-called photoelectric emission delay time has always been a fiercely debated topic. The latest progress in the field of attosecond science provides an important tool for further revealing the secret of this time delay.

Research schematic diagram
In the latest study, researchers used attosecond (10 billionth of a second) X-ray pulses emitted by SLAC's linear accelerator coherent light source to ionize core level electrons and "kick" them out of molecules. Then, they used separate laser pulses to "kick" the electrons in slightly different directions based on their emission time to measure the delay time of photoelectric emission.

Research shows that this delay time is as long as 700 attosecond, and the interaction between electrons plays an important role in this delay. Researchers point out that measuring and interpreting these time delays can help better analyze experimental results, especially in fields such as protein crystallography and medical imaging where the interaction between X-rays and matter is crucial. They plan to delve deeper into the electronic dynamics within different molecular systems, further revealing new information on electronic behavior and molecular structure.

Source: Science and Technology Daily, Author: Liu Xia

관련 추천
  • The Welding Application of Fiber Laser in the Food and Beverage Industry

    As is well known, food and beverage product manufacturers have strict requirements in ensuring the hygiene and cleanliness of their equipment. Once these devices and components are designed or manufactured improperly, they are likely to cause pollution, ultimately leading to health hazards, brand reputation damage, and expensive recall actions. The shortage of labor and raw materials further exace...

    2023-10-19
    번역 보기
  • Free space nanoprinting beyond optical limitations can create 4D functional structures

    Two photon polymerization is a potential method for nanofabrication of integrated nanomaterials based on femtosecond laser technology. The challenges faced in the field of 3D nanoprinting include slow layer by layer printing speed and limited material selection due to laser material interactions.In a new report in Progress in Science, Chenqi Yi and a team of scientists in the fields of technical s...

    2023-10-09
    번역 보기
  • Assisting Gas Mixing to Promote the Development of Fiber Laser Technology

    Just ten years ago, fiber laser cutting machines were considered experts in thin plates. The stores quickly realized that they had to invest in them to compete, at least by reducing their instrument materials. For high-quality sheet metal cutting, CO2 laser is still the way to go. Of course, fiber lasers can cut thicker blanks, but the quality is not very good, and their speed advantage almost dis...

    2024-01-11
    번역 보기
  • Polarization polariton topology pointing towards a new type of laser

    Semi light, partially matter quasi particles, known as excitons polaritons, can easily bypass obstacles and condense into a single coherent state - both of which are characteristics of topological insulators. Researchers from the United States and China have developed a new technology to manufacture microcavities from chloride based halide perovskites. They expect this work to lead to a new type o...

    2024-05-30
    번역 보기
  • Photonic time crystals triggered by laser pulses may open the door to a new branch of optics

    When scientists discovered that laser pulses can rapidly cause refractive index changes in the medium, resulting in "photonic time crystals (PTC)" in the near-visible light band, the door to a disruptive new application in optics seemed to quietly open.Scientists have a certain degree of understanding of photonic crystals and time crystals, the two have almost nothing in common, the basic common p...

    2023-09-07
    번역 보기