한국어

Synchrotron X-ray imaging technology

468
2024-08-15 14:28:46
번역 보기

According to a recent study published in the journal Science Advances, it reveals how early mammals grew and developed during critical periods of their long 'life history'. A research team including Queen Mary University of London used synchrotron X-ray tomography technology to image the growth rings in fossilized tooth roots, in order to infer the lifespan, growth rate, and even sexual maturity time of these ancient organisms. This is the first time that the growth patterns of these early mammals have been reconstructed in such detail.

Researchers used X-ray tomography technology to image growth rings in fossilized tooth roots.

By studying the spacing and texture of these growth rings, people can not only know the growth rate of these animals at different stages of life, but also infer their metabolism and overall life history.

New research answers an important question about the life history of early mammals: when did the growth patterns of modern mammals evolve? Previous studies have suggested that the growth of early mammals may have been more similar to modern mammals, but the results of this study challenge previous hypotheses.

The team found that the first signs of modern mammalian growth patterns (high growth rates in juvenile animals that stop growing during puberty) originated from the earliest true mammals approximately 130 million years ago. In contrast, early evolved mammals have relatively small changes throughout their lives. However, the growth rate of these animals is still much slower than existing small mammals such as rats and mice, and their lifespan is much longer, with the longest lifespan ranging from 8 to 14 years. The time of this growth rate change, as well as the changes in growth ring structure, indicate when these animals enter puberty and when they reach sexual maturity.

The data shows that although existing small mammals reach sexual maturity within a few months of birth, the earliest mammals took several years to reach sexual maturity. Further research has found that this long life history was common among early mammals throughout the Jurassic period. The unique life history characteristics of mammals, such as high metabolic rates and prolonged parental care, have evolved over millions of years. The Jurassic period seems to be a crucial period for this evolution.

The team used synchrotron X-ray tomography technology to image tiny growth rings in fossilized dental bone (the bone tissue that connects teeth to the jawbone). These rings are similar to those in trees, but smaller in size. By calculating the number of rings and analyzing their thickness and texture, the research team was able to reconstruct the growth patterns and lifespans of these extinct animals.

Source: Opticsky

관련 추천
  • University of California, Los Angeles Joins the American High Power Laser Facility Alliance

    The University of California, Los Angeles is joining LaserNetUS, a high-power laser facility alliance established by the Department of Energy, aimed at advancing laser plasma science.Unique facilities are located in universities and national laboratories across the United States and Canada, providing a wide range of opportunities for researchers and students.The Phoenix Laser Laboratory at the Uni...

    2023-09-15
    번역 보기
  • Juguang Technology launches miniaturized high-power semiconductor laser stack GS09 and GA03

    In today's technology field, Juguang Technology released two highly anticipated high-power semiconductor lasers on December 13th: GS09 and GA03. These two products are leading the innovation wave in the laser industry with their miniaturized design, excellent thermal management capabilities, and extensive customization flexibility.GS09 revolutionizes chip spacing by compressing the width of the st...

    2023-12-15
    번역 보기
  • Wearable Breakthrough! A rubber like deformable energy storage device using laser precision manufacturing

    Recently, foreign researchers have made remarkable breakthroughs in the field of flexible energy storage devices, successfully developing a small energy storage device that can stretch, twist, fold, and wrinkle freely. This significant achievement has been published in the journal npj Flexible Electronics.With the booming development of wearable technology, the demand for energy storage solutions ...

    2024-04-26
    번역 보기
  • Polish and Taiwan, China scientists are committed to new 3D printing dental implants

    Researchers from Wroclaw University of Technology and Taipei University of Technology in China are developing dental implants made from 3D printed ceramic structures connected to metal cores. Due to the use of biodegradable magnesium, bone tissue will gradually grow into such implants."The result will be a composite implant that can replace human teeth. Its scaffold is made of aluminum oxide...

    2024-04-17
    번역 보기
  • First 6-inch thin film lithium niobate photonic chip wafer pilot production line

    Recently, Shanghai Jiao Tong University Wuxi Photon Chip Research Institute (CHIPX) located in Binhu District, Wuxi City, has achieved a breakthrough - the first 6-inch thin film lithium niobate photon chip wafer has been produced on China's first photon chip pilot line, and high-performance thin film lithium niobate modulator chips with ultra-low loss and ultra-high bandwidth have been mass-produ...

    06-11
    번역 보기