한국어

Overview of ultrafast laser micro nano manufacturing technology: material processing, surface/interface control, and device manufacturing

767
2024-08-06 14:36:08
번역 보기

Researchers from Tsinghua University have summarized the research on ultrafast laser micro nano manufacturing technology, including material processing, surface/interface control, and device manufacturing. The relevant review titled "A Review of Ultrafast Laser Micro/Nano Fabric: Material Processing, Surface/Interface Control, and Device Fabric" was published in Nano Research.

Ultra fast laser processing technology provides a wide range of application opportunities in micro nano manufacturing, nanotechnology, biotechnology, energy science, photonics, and other fields due to its controllable processing accuracy, diverse processing capabilities, and extensive material adaptability. The processing capability and application of ultrafast lasers still need further exploration. In the field of material processing, controlling the atomic scale structure of nanomaterials is challenging. There are complex effects in ultrafast laser surface/interface processing, making it difficult to modulate the nanostructures and properties of the surface/interface as needed. In the process of ultrafast laser manufacturing of micro functional devices, the processing capability urgently needs to be improved. Here, researchers reviewed the research progress of ultrafast laser micro nano manufacturing in areas such as material processing, surface/interface control, and micro functional device manufacturing. Several useful ultrafast laser processing methods and applications in these fields were introduced. Ultra fast laser processing technology has various processing effects and capabilities, and has shown application value in multiple fields from science to industry.

Figure 1 Overview of ultrafast laser micro nano processing structure schematic diagram


Figure 2 Reshaping of Metal Nanomaterials Induced by Ultrafast Laser


Figure 3 Ultrafast laser-induced ablation of metal nanomaterials


Figure 4 Ultra fast laser plasma nanomachining of multifunctional structures with photoresponsive properties


Figure 5 Formation of surface dislocation layer under femtosecond laser irradiation


Figure 6 Laser Induced Coffee Ring Structure for Color Printing


Figure 7 Strong metal carrier interaction induced by ultrafast laser


Figure 8 Ultrafast laser induces bubble enhanced fluorescence in dye solution


Figure 9 Optical Metasurfaces Prepared by Near Field Enhanced Ultrafast Laser Processing Method


Figure 10 Using a multi beam ultrafast laser to fabricate photonic crystals and subwavelength gratings


Figure 11 Preparation of Nanogap Graphene Supercapacitors by Ultrafast Laser Bessel Beam Processing


Figure 12 Ultrafast Laser Induced Carbonization from Carbonation Points


Figure 13 Preparation of hybrid supercapacitors using MoCl5 assisted carbonization method based on ultrafast laser

This article reviews the research progress of ultrafast laser micro nano processing technology in material processing, surface/interface control, and functional device manufacturing. These research results demonstrate the extensive material processing capabilities of ultrafast lasers, from altering the internal atomic structure of nanomaterials to manipulating the properties of material surfaces/interfaces. By adjusting the energy deposition of ultrafast laser processing, different processing effects on nanomaterials can be achieved, including reshaping, ablation, and interconnection. Ultrafast lasers provide an effective method to control the properties of material surfaces/interfaces, thereby achieving the construction of surface structures, impact strengthening, and strong metal carrier interactions. In addition, this technology can also produce micro functional devices, including photonic crystal devices, optical components, and electronic devices. These advances demonstrate the potential of ultrafast laser processing in both scientific and industrial fields. Ultrafast laser processing technology is still rapidly developing and will play a more important role in micro nano manufacturing in the future, bringing changes to multiple application fields.

Source: Yangtze River Delta Laser Alliance

관련 추천
  • Scientists develop photo activated glass for clean energy production

    Japanese and Swiss scientists have collaborated to develop glass that can generate electricity under light, which may pave the way for sustainable energy production. Researchers from Tokyo Institute of Technology and the Swiss Federal Institute of Technology in Lausanne used femtosecond lasers to etch circuits on glass surfaces, resulting in the unexpected generation of semiconductor crystals.The ...

    2024-03-11
    번역 보기
  • Synchrotron X-ray imaging technology

    According to a recent study published in the journal Science Advances, it reveals how early mammals grew and developed during critical periods of their long 'life history'. A research team including Queen Mary University of London used synchrotron X-ray tomography technology to image the growth rings in fossilized tooth roots, in order to infer the lifespan, growth rate, and even sexual maturity t...

    2024-08-15
    번역 보기
  • China University of Science and Technology realizes millisecond level integrated quantum memory

    Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the field of integrated quantum storage. The research team led by Li Chuanfeng and Zhou Zongquan has improved the storage time of integrated quantum memory from 10 microseconds to milliseconds based on their original noiseless photon echo (NLPE) scheme, while s...

    03-31
    번역 보기
  • Dutch satellite instruments have achieved milestone achievements in transmitting laser data to Earth

    TNO wrote that this is the first time Dutch technology has been used to send data from a satellite to a ground station press release on Earth. This technology uses invisible laser signals to achieve faster and safer data flow compared to ubiquitous communication radio frequencies.Kees Buijsrogge, Director of TNO Space, said, "This critical milestone marks a significant achievement for the Netherla...

    2024-01-25
    번역 보기
  • Application of Laser Welding Technology in Ceramic Substrate Industry

     Ultra short laser pulses for local welding (Source: Fraunhofer IOF)With the accelerated evolution of electronic devices towards high power, high frequency, and miniaturization, ceramic substrates have become core materials in fields such as power semiconductors, 5G communications, and new energy vehicles due to their excellent thermal conductivity, insulation, and high temperature resistance. H...

    03-17
    번역 보기