한국어

Low noise! Switzerland develops a new type of laser

808
2024-07-03 10:39:08
번역 보기

According to foreign media reports, scientists from the Physics Research Institute and the Institute of Physics and the Center for Quantum Science and Engineering at the Swiss Federal Institute of Technology Lausanne (EPFL) in Lausanne, Switzerland have made a new progress in the field of excitation science, developing a smaller and quieter laser system than previous products.

Small laser system (Image source: Swiss Federal Institute of Technology Lausanne)


The team published their research findings in the journal Nature Photonics, introducing that the new laser system can be integrated into microcircuits in electronic devices, making it more cost-effective and multifunctional.

This new laser system has a wide range of potential applications and can transform various measuring equipment and systems, including advanced sensors indispensable for autonomous vehicle, aircraft and satellites, such as laser radar (LIDAR, light detection and ranging). Using smaller and quieter lasers in such sensors can create higher resolution images and models, providing more accurate data, which can be utilized by industries ranging from military to medicine to advance the development of technology in their respective fields.

Traditional lasers have always faced a challenge of high noise levels, which may seriously affect their performance. Laser noise may lead to reduced measurement accuracy and unreliable data, which is a critical flaw for fields that require extremely high precision.

This study suggests that laser systems may become smaller and quieter, potentially having a significant impact on precision instruments such as LiDAR. Lidar is used in various fields, and one of the most exciting applications is in the autonomous driving industry. By utilizing precision sensing technology, LiDAR can assist in real-time mapping of the surrounding environment of vehicles. This type of new, low noise, customized laser can greatly improve the accuracy and reliability of LiDAR systems, achieving safer autonomous driving. The versatility of such lasers also means that they can be easily integrated into the limited space of vehicles, thereby reducing the overall cost and complexity of the system.
This type of multifunctional laser can also affect future telecommunications technology, especially optical communication networks. More efficient and stable lasers can be converted into faster and more reliable Internet speeds and more stable data transmission.

Source: Yangtze River Delta Laser Alliance

관련 추천
  • Measurement of Fine Structure and Spin Interaction of Quantum Materials through TriVista High Resolution Spectral Measurement System

    backgroundThe Jörg Debus team from the Technical University of Dortmund in Germany is dedicated to researching optical quantum information processing and quantum sensing in materials with potential applications. The team mainly studies the fine structure of materials under light fields, such as quantum dots, quantum effects of two-dimensional materials, semiconductor defects in diamonds, and ...

    2024-03-11
    번역 보기
  • 3D printed nanocellulose for green building applications

    The hydrogel material made of nano cellulose and algae was tested as an alternative and more environmentally friendly building material for the first time. This study from Chalmers Institute of Technology and the Wallenburg Wood Science Center in Sweden demonstrates how to 3D print rich sustainable materials into various building components, using much less energy than traditional building methods...

    2024-02-19
    번역 보기
  • The constantly developing world of all-weather laser satellite communication

    Using light beams for communication is not a new idea, even outside of Star Trek, Star Wars, and other similar fantasy stories. Scientist and science fiction writer Arthur Clark predicted that beam communication, at that time modern satellite communication was just a dream.In 1975, the magazine published an article about laser communication or laser communication equipment. The demonstrati...

    2023-12-01
    번역 보기
  • Ultra fast laser tracking the "ballistic" motion of electrons in graphene

    Figure 1. The setup of Hui Zhao and his team at the University of Kansas Ultra Fast Laser Laboratory.A team of researchers from the University of Kansas's ultrafast laser laboratory recently managed to capture real-time ballistic transmission of electrons in graphene, which could lead to faster, more powerful, and more energy-efficient electronic devices in the future.The motion of electrons is of...

    2024-01-09
    번역 보기
  • BWT 969nm semiconductor pump source

    Semiconductor laser pump sources, especially those with a wavelength of 969nm, have become the preferred choice for high-power/high peak energy disc lasers due to their reduced quantum losses and heat generation.The 3000W 969nm fiber coupled semiconductor laser system launched by BWT uses 800 μ m NA0.22 fiber to output flat top optical energy distribution, combining lightweight and excellent optic...

    05-09
    번역 보기