한국어

Making Infrared Light Visible: New Equipment Utilizes 2D Materials to Convert Infrared Light

445
2024-06-24 11:13:56
번역 보기

Infrared imaging and sensing technology can be used in various fields, from astronomy to chemistry. For example, when infrared light passes through a gas, sensing changes in light can help scientists identify specific properties of the gas. The use of visible light may not always achieve this sensing.

However, existing infrared sensors are bulky and inefficient. In addition, due to the use of infrared sensors in the field of national defense, they are also subject to export restrictions. Therefore, there is an urgent need to develop localized and efficient equipment.

The method adopted by the IISc team is to feed the input infrared signal and pump beam together into the mirror stack. The nonlinear optical properties of the materials that make up the mirror stack can cause frequency mixing, resulting in an output beam with increased frequency (up conversion), while other characteristics remain unchanged. Using this method, they were able to convert infrared light with a wavelength of approximately 1550 nanometers upwards into visible light with a wavelength of 622 nanometers. The output light waves can be detected using traditional silicon-based cameras.

"This process is coherent - the characteristics of the input beam are preserved at the output end. This means that if a specific pattern is printed on the input infrared frequency, it will automatically transfer to the new output frequency," explained Varun Raghunathan, Associate Professor of Electronic Communication Engineering (ECE) and corresponding author of this research report published in Laser&Photonics Reviews.

The main author Jyothsna KM is calibrating the beam for the upconversion experiment
He added that the advantage of using gallium selenide lies in its high optical nonlinearity, which means that a single photon of infrared light and a single photon of the pump beam can combine to form a single photon with an upconversion frequency.

The research team can even use a thin layer of gallium selenide with a size of only 45 nanometers to achieve up conversion. Compared to traditional devices that use centimeter sized crystals, this small-sized device is more cost-effective. The study also found that its performance can be comparable to the most advanced upconversion imaging systems currently available.

The first author and doctoral student at the European School of Electronic Engineering, Jyothsna K Manattayil, explained that they used particle swarm optimization algorithms to accelerate the calculation of the required correct layer thickness. The wavelength that can be converted upwards through gallium selenide varies depending on the thickness. This means that the material thickness needs to be adjusted according to the application situation.

She said, "In our experiment, we used 1550 nanometers of infrared light and 1040 nanometers of pump beam. However, this does not mean that it cannot be used for other wavelengths. We see that performance does not decrease at various infrared wavelengths ranging from 1400 nanometers to 1700 nanometers."

Looking ahead, researchers plan to expand their work to upconvert longer wavelengths of light. They also attempted to improve the efficiency of the equipment by exploring other stacking geometries.

Raghunathan said, "The world is very interested in conducting infrared imaging without using infrared sensors, and our work may change the game rules of these applications.".

Related links: https://phys.org/news/2024-06-infrared-visible-device-2d-material.html
Paper link: https://dx.doi.org/10.1002/lpor.202400374

Source: Guangxing Tianxia

관련 추천
  • Breaking the limits of optical imaging by processing trillions of frames per second

    Pursuing higher speed is not just exclusive to athletes. Researchers can also achieve such feats through their findings. The research results of Professor Liang Jinyang and his team from the National Institute of Science (INRS) have recently been published in the journal Nature Communications.The team located at the INRS É nergie Mat é riaux T é l é communications resea...

    2024-04-08
    번역 보기
  • Tongkuai and KDPOF launch their first 980 nm multi gigabit automotive interconnection system

    Tongkuai Optoelectronic Devices, a global leader in vertical cavity laser emitters (VCSEL) and laser diodes (PD) solutions based in Germany, and a Spanish expert in high-speed optical network solutions, KDPOF, showcased the first 980 nm multi gigabit interconnect system for automotive systems at last week's ECOC.Both companies are committed to achieving the most advanced optical data communication...

    2023-10-17
    번역 보기
  • Panasonic Launches 3D Short Pulse Fiber Precision Laser Marking Machine LP-ZV

    Recently, Panasonic has launched the latest laser marking technology product - the LP-ZV series, which can provide high-precision and high-efficiency laser marking.Panasonic claims that the LP-ZV series has set a new standard that can bring excellent speed and accuracy in operation, suitable for various applications such as marking text, graphics, barcodes, and 2D code.The company stated that the ...

    2023-11-08
    번역 보기
  • Construction of Advanced New Laser Research Centers in American Universities

    The ATLAS R&D center is expected to be completed by mid-2026!A powerful new laser research facility located on the Foothills campus of Colorado State University will begin construction this month. The facility is planned to be put into use in mid-2026 and is the result of 40 years of laser development research at Colorado State University. It is a collaboration with the Fusion Energy Science P...

    2024-10-30
    번역 보기
  • NSF funding for the world leading EP-OPAL laser multi mechanism design in Rochester

    The National Science Foundation (NSF) of the United States has awarded the University of Rochester nearly $18 million for three years to design and prototype key technologies for EP-OPAL, a new facility dedicated to studying the interaction between ultra-high intensity lasers and matter.After the design project is completed, the facility can be built at the Laser Energy Laboratory (LLE). This fund...

    2023-09-26
    번역 보기