한국어

Progress made by the Precision Measurement Institute in Thorium Ion Trapping Research

735
2024-06-21 14:25:12
번역 보기

Recently, the Cold Molecular Ion Research Group of the Institute of Precision Measurement has made significant progress in the loading, trapping, and recognition of thorium ions. The related research results have been published as cover and selected articles in the international physics journal Journal of Applied Physics, titled "Loading and identifying variable charged thorium ions in a linear ion trap with a time of flight mass spectrometer".

In recent years, the measurement of the first excited state energy of thorium-229 atomic nuclei has become a frontier and hotspot in precision measurement physics research. The energy of the first excited state of thorium-229 atomic nucleus is only about 8.3 eV higher than that of the ground state, and the corresponding radiation transition line width is about 10-4? Hz。 At present, thorium-229 is the only nuclide confirmed to be capable of using laser to regulate nuclear energy levels and achieve nuclear clocks.

The research team successfully trapped and accumulated thorium ions in an ion trap using a dynamic loading combined with buffer gas collision cooling method [2]. Meanwhile, the self-developed ion trap time-of-flight mass spectrometry combined system was used to analyze the quantity, velocity distribution, and trapping lifetime of thorium ions. The relevant achievements have laid the technical foundation for further exciting thorium-229 nuclear transitions through electron bridge processes [3].

PhD students Li Lin and Li Zi from the Institute of Precision Measurement are the co first authors of this article, Associate Researcher Hua Xia is the co author, and Researcher Tong Xin is the corresponding author.

This work has been supported by the National Natural Science Foundation of China and the National Key Research and Development Program.

[1] Zi Li,Lin Li,Xia Hua,and Xin Tong,Loading and identifying various charged thorium ions in a linear ion trap with a time-of-flight mass spectrometer,J. Appl. Phys. 135,144402 (2024).

[2] Lin Li,Zi Li,Xia Hua,and Xin Tong,Dynamic laser ablation loading of a linear Paul trap,arXiv:2402.17981,J. Phys. D accepted (2024).

[3] Lin Li,Zi Li,Chen Wang,Wen-Ting Gan,Xia Hua,and Xin Tong,Scheme for the excitation of thorium-229 nuclei based on electronic bridge excitation,Nucl. Sci. Tech. 34,24 (2023).

Cover and Selected Articles of the International Journal of Applied Physics

Source: Institute of Precision Measurement Science and Technology Innovation, Chinese Academy of Sciences

관련 추천
  • Shanghai Optics and Machinery Institute has made progress in the research of new terahertz sources based on Yb lasers

    Recently, the State Key Laboratory of Intense Field Laser Physics of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics has made new progress in generating intense field terahertz waves based on Yb laser pumped organic crystals. The relevant research results were published in Applied Physics Letters under the title "Efficient strong field THz generation from DSTMS crys...

    2024-04-09
    번역 보기
  • 3D printed chocolate: a delicious fusion of innovation and sustainable development

    In the era of sustainable development and cutting-edge technology, the integration of 3D printing and culinary art is not only an innovation, but also a proof of human creativity. Imagine in such a world, your desserts are not just coming out of the kitchen, but carefully designed and printed layer by layer. This is not a glimpse of the distant future, but the reality of today, as developers have ...

    2024-02-19
    번역 보기
  • IoTech shapes the flexible future of 3D printed electronic products

    The rapidly developing IoTech enterprise headquartered in Israel will showcase at LOPEC 2024 how its disruptive digital manufacturing continuous laser assisted deposition technology shapes the future of microelectronics and additive manufacturing.Herv é Javice, co-founder and CEO of ioTech, commented, "We are delighted to be attending the LOPEC exhibition for the first time and showcasing ...

    2024-02-27
    번역 보기
  • WVU engineers develop laser systems to protect space assets from the impact of Earth orbit debris

    The research from the University of West Virginia has been rewarded, as debris scattered in planetary orbits that pose a threat to spacecraft and satellites may be pushed away from potential collision paths by a coordinated space laser network.Hang Woon Lee, director of the Space Systems Operations Research Laboratory at the University of West Virginia, said that artificial debris dumps, including...

    2023-10-10
    번역 보기
  • Scientists have conducted a series of studies on the mechanical properties and flame retardancy of laser formed Ti40 flame-retardant titanium alloy

    Recently, Professor Huang Chunping's team from Nanchang University of Aeronautics and Astronautics conducted a series of studies on the mechanical and flame retardant properties of laser formed Ti40 flame retardant titanium alloy. The research team used typical Ti40 flame-retardant titanium alloy as the research object and prepared Ti40 flame-retardant titanium alloy using LSF technology. The micr...

    2023-08-15
    번역 보기