한국어

EO Technologies from South Korea enters the glass substrate processing market

1167
2024-06-18 15:44:27
번역 보기

Recently, EO Technologies, a well-known semiconductor laser processing equipment manufacturer in South Korea, is emerging in the glass substrate processing market.

It is understood that EO Technologies is entering the glass substrate TGV market based on its UV laser drilling equipment originally used in PCB substrate technology. TGV technology is the core process for drilling holes inside glass substrates. EO Technologies has now started providing relevant laser process equipment to Samsung Electronics and Apple (based on end users).

Previously, EO Technologies focused on the laser drilling market based on its ability to produce DPSS ultraviolet laser sources, and supplied UV laser drilling equipment to PCB manufacturers such as Samsung Electric, whose end users are Samsung Electronics.

Since the end of last year, companies such as Samsung Electric have expressed their intention to enter the glass substrate business. It seems that the concept of glass substrates is gradually deeply integrated into the existing PCB market. However, currently, Samsung Electric's UV laser drilling equipment has relatively small sales in the PCB business field.

According to industry insiders, since the second half of last year, EO Technologies has been using TGV drilling equipment for glass substrate processing for multiple customers, including Samsung Electric, and is currently conducting yield testing.

Given that the market is still in its early stages, Samsung Electronics' packaging technology is expected to take at least 1 to 2 years to mature. However, once entering the mass production stage, this technology will form a synergistic effect with Samsung Electronics' memory department and its renowned laser marking supply line, jointly forming a promising sales growth point.

The core challenge of glass substrate TGV technology lies in successfully penetrating the drill bit through the core layer and the insulation layer of ABF. The industry has highly praised EO Technologies' UV laser drilling equipment, as it uses low pulse, high-energy laser technology to accurately drill holes with diameters as low as 10um or even smaller.

However, the key to this process lies in overcoming the problem of glass breakage to ensure high yield during mass production.
According to the latest news, EO Technologies' UV laser drilling technology on double-layer glass substrates is nearing commercialization, but overcoming material vulnerability is still considered a key prerequisite for technological breakthroughs. At present, the estimated production of this technology is still below 50%.

Since 2020, EO Technologies has been providing laser annealing equipment for Samsung Electronics' DRAM 1z (15nm level) mass production process, and has the same equipment on the HBM production line. Based on its long-term partnership with Samsung Electronics, EO Technologies has recently expanded its customer network to include TSMC and Apple.

It is worth mentioning that Apple is currently actively evaluating the application prospects of glass substrate technology in the next generation of mobile application processors (APs), and the possibility of cooperation with companies such as Samsung Electric is gradually increasing.

This may be an opportunity for EO Technologies, which has established a solid cooperation framework with Samsung and Apple. At present, Samsung Electric has successfully provided the relevant process products to Apple.

As of now, EO Technologies has not confirmed this incident. According to an insider, EO Technologies is currently testing laser drilling machines related to glass substrates, but due to strong NDA (confidentiality agreement) with customers, further progress is difficult to confirm.

Source: OFweek

관련 추천
  • Researchers have captured the strange behavior of laser induced gold

    A new study conducted by the US Department of Energy's SLAC National Accelerator Laboratory has revealed the strange behavior of gold when impacted by high-energy laser pulses.When certain materials are subjected to strong laser excitation, they will quickly disintegrate. But gold is exactly the opposite: it becomes more resilient and resilient. This is because the way gold atoms vibrate together ...

    2024-02-17
    번역 보기
  • Emerging laser technologies for precise manufacturing of multifunctional nanomaterials and nanostructures

    The use of photons to directly or indirectly drive chemical reactions has fundamentally changed the field of nanomaterial synthesis, leading to the emergence of new sustainable laser chemistry methods for manufacturing micro - and nanostructures. The incident laser radiation triggers complex interactions between chemical and physical processes at the interface between solid surfaces and liquid or ...

    2024-08-05
    번역 보기
  • Changing Optical Design: How Multi scale Simulation Improves the Efficiency of Modern Devices

    Optical equipment is an integral part of technologies such as data centers and autonomous vehicle, which are constantly developing to meet the needs of complex applications. The challenge faced by designers is to manipulate light at the wavelength scale to achieve the required optical properties, which requires precision at both the nano and macro scales. Nanoscale structures, such as those on LED...

    2024-03-02
    번역 보기
  • Graphene terahertz absorber and graded plasma metamaterials

    Optical metamaterials are an effective way to utilize their superior photon capture capabilities. Therefore, perfect absorbers can be achieved through nanoscale resonant plasmas and metamaterial structures.Metamaterial perfect absorbers (MPAs) are typically composed of periodic subwavelength metals (such as plasma superabsorbers) or dielectric resonance units. Compared with static passive physical...

    2024-05-20
    번역 보기
  • Application of Multipurpose Femtosecond Laser Interferometry in High Precision Silicon Nanostructures

    Researchers from the Laser Processing Group of the IO-CSIC Institute of Optics in Spain report on the application of multi-purpose femtosecond laser interference in high-precision silicon nanostructures. The related research was published in Optics&Laser Technology with the title "Versatile femtosecond laser interference pattern applied to high precision nanostructured of silicon".Highlights:...

    2024-07-10
    번역 보기