한국어

Significant progress has been made in the research on the detection of microwave electric fields in the Rydberg area of Shanghai Institute of Optics and Technology

511
2024-05-08 15:36:49
번역 보기

Recently, the Aerospace Laser Technology and System Department of the Shanghai Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, and the East China Research Team of the Key Laboratory of Quantum Optics, Chinese Academy of Sciences, together with the research team of Professor Chen Liqing of East China Normal University, demonstrated a Rydberg microwave sensor with high sensitivity and high instantaneous bandwidth for the first time in rubidium Rydberg atoms. The related achievements are titled "Highly sensitive microwave electronics with enhanced instantaneous bandwidth" and published in the PHYSICAL VIEW APPLED (Letter).

Rydberg atoms are highly excited atoms with a large electric dipole moment and are highly sensitive to external electromagnetic fields. Therefore, it has been proposed to use the electromagnetic induced transparency (EIT) and Autler Townes (AT) effects of Rydberg atoms to measure microwave electric fields. The detection sensitivity and instantaneous bandwidth are key indicators for Rydberg microwave detection. Previously, based on Rydberg atomic superheterodyne detection technology, high sensitivity (55 nV cm? 1 Hz? 1/2) could be achieved, but its instantaneous bandwidth was limited to several hundred kilohertz. Having both high sensitivity and large instantaneous bandwidth is a challenge in the research field of Rydberg microwave electric field detection.

Based on six wave mixing technology, the research team experimentally demonstrated a Rydberg microwave sensor that achieves both high sensitivity and high instantaneous bandwidth in a rubidium Rydberg atomic gas chamber. With an instantaneous bandwidth of up to 10.2 MHz, the maximum detection sensitivity can reach 62nVcm-1Hz-1/2. Theoretical and experimental results indicate that the enhanced high-frequency response comes from the enhancement effect of the detection light negative sideband generated by the six wave mixing process. The research results will promote the application of Rydberg microwave sensing technology in radar and communication.

The related work has been supported by projects such as the National Natural Science Foundation of China.

Figure 1 Schematic diagram of the experimental setup for the principle (a) of the Rydberg microwave sensor

(b) (c) Two six wave mixing processes that generate positive and negative sidebands

Figure 2 Sensitivity of Rydberg Microwave Sensor (a) Relationship between Superheterodyne Signal and Signal Microwave Power (b) Sensitivity Determined by System Noise

Source: Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences

관련 추천
  • Laser Photonics wins a large order from Lufthansa Technologies subsidiary

    Recently, American laser cleaning system developer Laser Photonics announced that the company has successfully secured an order for a cleaning technology laser cleaning system from Lufthansa Technik Puerto Rico, a technology subsidiary of Lufthansa, the largest aviation group in Europe.Lufthansa Technik is the world's largest independent provider dedicated to providing maintenance, repair, and com...

    2023-12-19
    번역 보기
  • Shanghai Institute of Optics and Mechanics has made progress in studying the structure and properties of aluminum phosphate glass

    Recently, Hu Lili, a research team of the High Power Laser Unit Technology Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics, used a method combining experiment, molecular dynamics simulation and quantitative structure property relationship analysis (QSPR) to study aluminum phosphate glass, and the related research results were published in the Journal o...

    2023-09-15
    번역 보기
  • Natural Communication: Oxide Dispersion Enhancement for High Performance 3D Printing of Pure Copper

    The laser additive manufacturing technology of pure copper (Cu) with complex geometric shapes has opened up vast opportunities for the development of microelectronic and telecommunications functional devices. However, laser forming of high-density pure copper remains a challenge.Recently, the forefront of additive manufacturing technology has noticed a joint report by the University of Hong Kong, ...

    04-11
    번역 보기
  • New type of metasurface with adjustable beam frequency and direction

    Recently, according to the journal Nature Nanotechnology, a team from the California Institute of Technology reported that they have constructed a metasurface covered with micro adjustable antennas that can reflect incident light beams: one beam of light enters and multiple beams of light exit, each with a different frequency and propagating in a different direction. This is a new method for proce...

    2024-07-30
    번역 보기
  • 3D printed nanocellulose for green building applications

    The hydrogel material made of nano cellulose and algae was tested as an alternative and more environmentally friendly building material for the first time. This study from Chalmers Institute of Technology and the Wallenburg Wood Science Center in Sweden demonstrates how to 3D print rich sustainable materials into various building components, using much less energy than traditional building methods...

    2024-02-19
    번역 보기