한국어

Laser ablation helps to trace the origin of medieval metals

707
2024-04-13 14:22:01
번역 보기

Archaeologists have long wondered why the people of Anglo Saxon England began using more silver coins and fewer gold coins between 660 and 750 AD. Researchers in Europe now say they have developed a method to help find the answer. This technology combines laser ablation with traditional trace element analysis to match the isotopic abundance of silver bars in coins with known sources of metal ores from that period.

Isotope ratios in historical coins
Previous generations of archaeologists classified coins and other artifacts based on their shape, inscriptions, and other easily visible details, while today's researchers explore these objects at the atomic level.

A team from the University of Oxford and Cambridge in the UK, as well as the Free University of Amsterdam (VU) in the Netherlands, selected 49 coins from the collection at the Fitzwilliam Museum in Cambridge. These coins were discovered in the Anglo Saxon regions of England, Frisia, and France along the North Sea coast. All of these can be traced back to around 670-816 AD, which historians sometimes refer to as the "long eighth century.". The team members are searching for lead isotope ratios in silver and concentrations of gold, bismuth, and other trace elements, both to understand the origin of silver and to gain insight into the details of medieval refining and smelting processes.

Using laser ablation
Firstly, the researchers placed these coins in a laboratory system called Laser Ablation Inductively Coupled Mass Spectrometry (LA-ICPMS) at the University of Cambridge. The team used a laser energy of 6 J/cm2 and a 10 Hz pulse to ablate each coin for 60 seconds, and quantified the presence of 18 isotopes, including silver, gold, chromium, and zinc.

Jane Kershaw from the University of Oxford stated that the accuracy of a typical laser ablation device is about 10 times lower than that of collecting physical samples, dissolving samples with wet chemistry, and running them through a laboratory mass spectrometer. However, archaeologists hope to achieve the highest level of accuracy while minimizing damage to precious historical relics.

This is why portable laser ablation systems and their PTFE filters make archaeologists happy. "Through this approach, we can obtain high-precision minimally invasive sampling (equivalent to wet chemistry)," Keshaw said. "In addition, there are no chambers, so the size of objects we can analyze is not limited. This is a very new technology that has been applied to pigments in museum artworks, but we were the first to adopt this technology in archaeological silverware. There are only a few portable lasers around. You cannot purchase these machines, you must build them, and we are fortunate to be able to use the machines built by the Free University of Amsterdam."

The Origin of Silver
The research team found that the isotopic characteristics of the 29 earliest coins (dating back to before 750 AD) matched the silver extracted by the Byzantine Empire from the 3rd to 7th centuries AD. Later silver coins contained a small amount of gold, which was a characteristic of the silver mined in M é le (modern western France).

Keshaw said, "There is nothing else in archaeological records that can convince us of the existence of such a large amount of Byzantine silver in England, to the extent that it may have been the source of the first batch of post Roman silver coins." "The idea of the Eastern Mediterranean driving economic recovery in Northwest Europe is quite shocking. The results of the later coins (after 750 AD) are more in line with our ideas. Nevertheless, it still emphasizes England's dependence on silver from the European continent."

Keshaw has been studying medieval silverware for the past five years. "We use laser methods and direct physical sampling, always combining lead isotope and trace element data (especially important for gold and bismuth)," she said. "In the past, people were concerned that mixing and refining (excluding) silver would make the interpretation of results difficult or even impossible. However, we have been able to draw conclusions about Islamic silver, Viking silver, and now Anglo Saxon silver. We can model mixing, but refining results is not as common. These methods are powerful - paradigm effective!"

Next, the team will bring the recently developed portable laser ablation system from the University of Victoria to the Fitzwilliam Museum to measure lead isotopes in coins. The device consists of a 532 nm wavelength pulsed diode pumped solid-state laser, which is connected to a fiber optic and then connected to 100 nm μ A m wide aspherical lens focuses the beam of light on each coin. The PTFE filter collected trace amounts of ablative material, and the research team analyzed it using mass spectrometry.

Source: Laser Net

관련 추천
  • Laser Photonics Corporation receives MF-1020 order

    Recently, Laser Photonics Corporation (LPC) announced that it has partnered with Foon Technologies to receive its second order for the DefenseTech MRL (MF-1020) handheld cleaning system, which was facilitated by a distributor.The DTMF-1020 air-cooled handheld pulse laser cleaning equipment adopts dual axis technology, simplifying the maintenance process. The system will be used by the Navy Command...

    02-27
    번역 보기
  • UK to Build World's Largest Power Laser: Accelerating the Use of Nuclear Fusion and Promising to Obtain Clean Energy

    According to reports, British scientists will build the world's largest power laser. They hope that this £ 85 million (approximately $103 million) device can accelerate the use of nuclear fusion and potentially obtain clean energy, which is inexhaustible.According to the report, the "Vulcan" 20-20 laser will be built in Havel, Oxfordshire, and it will produce a laser brightness that is 24 t...

    2023-10-09
    번역 보기
  • Application and Effect of Laser Cleaning

    Mold cleaning: Mold plays a very important role in industrial production. Currently, there are over a thousand mold related enterprises in China, driving the related output value to nearly 10 billion yuan. Among them, mold cleaning is an essential step in mold production. Laser can achieve contactless cleaning of molds, which is very safe for the surface of the mold, ensuring its accuracy, and can...

    2023-10-14
    번역 보기
  • China University of Science and Technology has made progress in the study of the regulatory mechanism of thermally induced delayed fluorescence

    Recently, Professor Zhou Meng's research group at the University of Science and Technology of China collaborated with Professor Fu Hongbing's team at the Capital Normal University to reveal the mechanism by which aggregation effects regulate the luminescent properties of thermally delayed fluorescent materials. The research findings, titled "Aggregation Enhanced Thermally Activated Delayed Fluoros...

    2024-06-28
    번역 보기
  • Vast's Haven-1 program has become the world's first commercial space station equipped with SpaceX Starlink lasers

    Vast's Haven-1 program will become the world's first commercial space station, equipped with SpaceX's Starlink laser terminal, providing connections to its crew users, internal payload racks, external cameras, and instruments at speeds of gigabits per second and low latency.Max Haot, CEO of Vast, said: "If you need to provide high-speed, low latency, and continuous Internet connection on the orbit...

    2024-04-10
    번역 보기