한국어

DataLase launches a new laser active transparent to white coating

932
2024-03-09 14:31:49
번역 보기

Laser coding and marking technology expert DataLase has launched a series of new colorless to white coatings for a range of packaging applications.

These coatings are centered around biodegradable and sustainably sourced raw materials, providing high contrast white printing even on difficult substrates such as 12 micron PET and shrink film, under the weight of flexographic and gravure coatings. This series includes transfer printing coatings for directly marking the shape of objects, such as bottles and bottle caps.

This multifunctional coating can also be used for folding paper boxes, flexible films, foils, small bags, and labels. High opacity, clear laser printing quality, and QR code readability can be achieved on a range of lasers, providing CO2, fiber, and UV lasers.

Compared to laser ablation, these coatings can eliminate ink debris, odors, and exhaust gases, making them suitable for sterile packaging. They also extend the lifespan of common filters and extraction equipment in printing lines. In addition, compared to laser ablation, coatings allow for faster laser imaging, thereby increasing production yield and extending laser lifespan at lower laser power.

Uniquely, these coatings provide white markings through a metal free natural alternative, with titanium dioxide commonly used in traditional and digital inks. This sustainable chemical composition and the resulting coatings are widely protected by exclusive patents held by DataLase. This comprehensive patent protection ensures a high degree of assurance in the supply chain.

Ally Grant, Chief Technology Officer of DataLase, stated, "Based on the high expectations set by our market leading paint and pigment technology, our innovative transparent to white coatings aim to reduce consumables and waste in the production environment. They not only increase production and productivity, but also have wear and friction resistance, thereby minimizing the need for potential rework and further waste.".

These coatings have a wide range of uses and are sufficient to meet product coding applications in various industries, including food and beverage, home and personal care, pharmaceuticals, and healthcare. They are compatible with a variety of substrates such as film materials, paper, and plastics, making them ideal for use in small bags, laminates, and bottles.

Source: Laser Net

관련 추천
  • Overview of Ultra Short Pulse Laser Processing of Wide Bandgap Semiconductor Materials

    Professor Zhang Peilei's team from Shanghai University of Engineering and Technology, in collaboration with the research team from Warwick University and Autuch (Shanghai) Laser Technology Co., Ltd., published a review paper titled "A review of ultra shot pulse laser micromachining of wide bandgap semiconductor materials: SiC and GaN" in the international journal Materials Science in Semiconductor...

    2024-07-30
    번역 보기
  • Eurotech launches BestNet fiber rack mounting housing

    Fiber optic solution provider Eurotech announced the launch of a series of fiber optic rack mounting enclosures. The BestNet 19 inch top opening fiber optic interconnect unit is a fiber optic patch panel and cabinet, ideal for wiring, terminating, and managing fiber optic terminations, suitable for interconnect, cross connect, or splice applications in LAN environments. Modular fiber optic interco...

    2024-05-16
    번역 보기
  • Accelerating electrons by emitting laser light into a nanophotonic cavity

    The laser driven particle accelerator on silicon chips was created by two independent research groups. With further improvements, this dielectric laser accelerator can be used in medicine and industry, and even in high-energy particle physics experiments.Accelerating electrons to high energy is usually accomplished over long distances in large and expensive facilities. For example, the electron ac...

    2023-10-28
    번역 보기
  • Due to research conducted by scientists from South Korea and the UK, the power of lasers will increase by one million times

    Due to research conducted by scientists from South Korea and the UK, the power of lasers will be able to increase by one million times. The researchers plan to apply this improvement for scientific purposes.The study was led by representatives of Strathclyde University and the Korea Institute UNIST and GIST. Behind the scenes footage of their work in the journal Nature Photonics. It has been prove...

    2023-11-27
    번역 보기
  • Each unit of metamaterials used for simulating optical calculations is smaller than the wavelength of the light they are designed to manipulate

    The new architecture based on metamaterials provides a promising platform for constructing large-scale production and reprogrammable solutions that can perform computational tasks using light.The idea of simulating computers - a device that uses continuous variables instead of zero sum ones - may evoke outdated machinery, from mechanical watches to bomb sight devices used in World War II. But emer...

    2024-03-30
    번역 보기