한국어

Pressure sensing using dual color laser absorption spectroscopy

216
2024-03-09 13:58:51
번역 보기

The research team led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences recently designed a concentration independent pressure sensing technology for high-temperature combustion diagnosis. This method is based on dual color laser absorption spectroscopy.

The results of this study have been published in Optics Letters.
Aircraft engines are transitioning towards high-temperature and high-pressure combustion to improve thermodynamic efficiency. Pressure is a key parameter for monitoring engine performance and diagnosing engine faults. However, traditional contact pressure sensors can disrupt combustion flow and are limited by the temperature tolerance of the sensor material.

The researchers of this study designed a non-contact pressure sensing technology for high-temperature environments and tested it at temperatures up to 1300 K. This study mainly addresses the challenge of considering the influence of molecular concentration on gas pressure measurement in such an environment.

Researchers have found that by connecting double absorption lines to widen the collision line width, concentration variables can be alleviated. This breakthrough enables researchers to achieve concentration independent pressure measurements.

To verify this discovery, considering that the main product of hydrocarbon fuel combustion systems is H2O, the team used double absorption lines of H2O near 1343 nm and 1392 nm in a precisely designed heating absorption cell. They each achieved 50 μ S and 3% time resolution and pressure measurement uncertainty.

Source: Laser Net

관련 추천
  • Super-resolution fluorescence microscopy utilizes fluorescent probes and specific excitation and emission programs

    Super-resolution fluorescence microscopy surpasses the diffraction limit of what used to be a barrier by using fluorescent probes and specific excitation and emission programs. Most SR technologies heavily rely on image computation and processing to retrieve SR information. However, factors such as fluorescence group photophysics, chemical environment of the sample, and optical settings may cause ...

    2024-01-23
    번역 보기
  • The world's highest power industrial grade fiber laser is released in Tianjin

    On August 31st, Tianjin Kaipulin Optoelectronics Technology Co., Ltd. (hereinafter referred to as Kaipulin), a Tianjin Port Free Trade Zone enterprise, officially released the world's first 200000 watt ultra-high power industrial grade fiber laser, breaking the record for the highest power of industrial grade fiber lasers in the world and marking China's stable position in the international advanc...

    2024-09-02
    번역 보기
  • Tower and Fortsense have announced the launch of their highly advanced 3D imager for LiDAR

    Recently, Gaota Semiconductor announced the successful development of an advanced 3D imager based on dToF technology for LiDAR applications. The newly developed product FL6031 is based on Tower's 65nm Stacked BSI CIS platform and has pixel level hybrid bonding function. It is the first in a series of products aimed at meeting the needs of numerous deep sensing applications in the automotive, consu...

    2023-09-14
    번역 보기
  • Photon automation expands through new laser application laboratories

    Photon Automation, Inc., headquartered in Greenfield, Indiana, has been committed to providing automated laser technology solutions since 2000. The company is pleased to announce the opening of its state-of-the-art laser application laboratory in Farmington Hills, Michigan. This 7400 square foot facility will be led by renowned laser physicist Dr. Najah George, who has over 35 years of extensive e...

    2023-09-01
    번역 보기
  • Implementing and studying non Hermitian topological physics using mode-locked lasers

    A mode-locked laser is an advanced laser that can generate very short optical pulses with durations ranging from femtoseconds to picoseconds. These lasers are widely used for studying ultrafast and nonlinear optical phenomena, but they have also been proven to be applicable to various technological applications.Researchers at the California Institute of Technology have recently been exploring the ...

    2024-03-27
    번역 보기