한국어

Beijing Institute of Technology has made significant progress in the study of ultrafast carrier dynamics in optoelectronic functional crystals

344
2024-02-21 14:08:27
번역 보기

Recently, teachers and students from the Institute of Solid State Laser and Ultrafast Photonics at the School of Physics and Optoelectronic Engineering have made significant progress in the study of ultrafast carrier dynamics in optoelectronic functional crystals. The related research results are titled "Anisotropic carrier dynamics and laser fabricated luminosity patterns on oriented single crystal perovskite wafers" and published online in the international authoritative journal Nature Communications, The research results are of great significance for promoting the practical application process of functional crystals in the field of optoelectronics.

The first author of the paper is Beijing University of Technology, with Ge Chao, an assistant researcher at the School of Physics and Optoelectronic Engineering, and Li Yachao, a doctoral student, as co first authors. Ge Chao, an assistant researcher at Beijing University of Technology, and Song Haiying, an associate researcher, are co corresponding authors. Professor Zhang Wenkai from Beijing Normal University and Professor Liu Yang from Shandong University are also co corresponding authors. This study has been supported by projects such as the National Natural Science Foundation of China and the Beijing Municipal Education Commission Research Program.

In recent years, perovskite materials and their applications in the field of optoelectronics have attracted widespread attention. However, a deep understanding of their anisotropic behavior in ultrafast carrier dynamics is still insufficient. To compensate for this deficiency, the research team, based on high-quality MAPbBr3 single crystal wafers with different orientations, for the first time revealed the polarization of photo excited charge carriers within crystal planes with different orientations and the anisotropic dynamic evolution between crystal planes at the picosecond time scale. This discovery provides a deeper understanding of the relaxation pathways of ultrafast charge carriers from a crystallographic perspective, which is of great significance for exploring and expanding the applications of perovskite single crystals in the field of ultrafast optoelectronics, such as light modulators, high-speed polarization sensors, and ballistic transistors.

In addition, by using femtosecond laser two-photon processing technology, the research team successfully prepared three orders of magnitude fluorescence enhanced luminescent patterns. An in-depth analysis of the fluorescence enhancement mechanism from the perspectives of multidimensional space (bulk and micro/nanoscale) and time (steady-state and transient) provides a convenient top-down strategy for improving the photoluminescence intensity of bulk crystals. This study provides a profound understanding of the ultrafast carrier dynamics of MAPbBr3 from a crystallographic perspective, with the hope of providing more guidance for the orientation selection and utilization of perovskite hot carriers in optoelectronics in the future.

The dynamic evolution of photo excited charge carriers on the (100), (110), and (111) crystal planes of MAPbBr3 and the mechanism of femtosecond laser-induced fluorescence enhancement.

Source: OFweek

관련 추천
  • Integra Optics launches groundbreaking XGS-PON and GPON combined OLT SFP+optical transceivers

    Infinite Electronics brand and innovative operator level global supplier of fiber optic components, Integra Optics, announced the launch of its latest innovative product, the XGS-PON and GPON combination OLT SFP+BiDi optical transceiver module. This module integrates the passive optical network OLT and GPON OLT optical modules of XG (S), promoting seamless network rate deployment within the optica...

    2024-04-11
    번역 보기
  • MICRONICS launches its innovative SLS 3D printer product

    3D printing company Micronics announced the launch of its new Micron desktop selective laser sintering (SLS) 3D printer.The company stated that Micron is priced at $2999 and aims to bring industrial grade 3D printing capabilities to desktops for professionals and hobbyists. One of the main features of Micron is its ability to print complex objects without the need for supporting structures. This i...

    2024-06-17
    번역 보기
  • Abnormal relativistic emission generated by strong interaction between laser and plasma reflector

    The interaction between strong laser pulses and plasma mirrors has been a focus of recent physical research, as they generate interesting effects. Experiments have shown that these interactions can generate a nonlinear physical process called high-order harmonics, characterized by emitting extreme ultraviolet radiation and brief flashes of laser light.Researchers from the Czech Extreme Light Infra...

    2023-12-04
    번역 보기
  • Chip guided beam for new portable 3D printers

    Imagine being able to carry a 3D printer with you and quickly create low-cost objects, such as fastening bicycle wheels or parts needed for critical medical surgeries. Scientists from the Massachusetts Institute of Technology (MIT) and the University of Texas at Austin have combined silicon photonics and photochemical technology to successfully develop the first chip based 3D printer, taking a cru...

    2024-06-18
    번역 보기
  • Successful First Satellite Earth Laser High Speed Image Transmission Experiment

    Recently, the reporter learned from Changguang Satellite Technology Co., Ltd. (hereinafter referred to as "Changguang Satellite") that the company used a self-developed vehicle mounted laser communication ground station to conduct satellite ground laser high-speed image transmission experiments with the onboard laser communication terminal of the "Jilin No.1" constellation MF02A04 satellite and ac...

    2023-10-14
    번역 보기