한국어

Researchers at Georgia Institute of Technology have developed cost-effective nanoscale printing

245
2024-02-19 15:31:14
번역 보기

A team of researchers from Georgia Institute of Technology has developed a scalable printing system for metal nanostructures using a new technology called superluminescent light projection. The inventor of this technology Dr. Sourabh Saha and Jungho Choi submitted a patent application for nanoscale printing.

Nowadays, the cost of existing nanoscale printing technologies hinders their widespread use and scalability. The femtosecond laser based technology currently used for printing complex 2D and 3D structures is slow and expensive, and often unaffordable for small and medium-sized batch manufacturing applications. These high-intensity femtosecond lasers can overcome optical diffraction limits, but they are costly. The current technology is still limited by the slow sequential printer system. An alternative light based printing system is needed, which can eliminate expensive lasers while achieving precise and detailed nanoscale printing of polymers and metals.

The potential applications of cost-effective nanoprinting include nanoscale patterned metal films, which are important components in nanodevices and applications, such as electrical interconnections in high-density printed electronics, plasma based metamaterials for biosensing and optical modulation, and microelectromechanical systems.

The SLP system developed by Georgia Institute of Technology provides several advantages for nanoscale printing processes: lower cost, higher speed, and finer resolution. The light source is a type of super light-emitting diode, which is 100 times cheaper than the currently used lasers, thereby reducing the overall printing cost by 10-50 times. By utilizing the specific effects of superluminescent light projection, sharp edge images with minimal speckle patterns can be created, resulting in high-resolution images and structures on polymer and metal based films.

Moreover, by implementing a parallel writing mechanism, the system significantly improves throughput speed, which is 100 times faster than existing metal printing methods and 4 times faster than existing polymer printing methods. These advantages create an easily scalable system for various industrial needs and make nanoscale printing a viable resource for a larger manufacturing audience.

The proposed solution has several advantages. Firstly, it is cost-effective, utilizing existing SLEDs that are much cheaper than commonly used femtosecond lasers, thereby greatly reducing the cost of nanoscale printing. Secondly, due to its parallel writing system, it has higher speed and can achieve faster throughput, especially in metal printing. Compared with existing technologies, it is at least 100 times faster, and polymer printing is at least 4 times faster. Thirdly, unlike other nanoscale printing methods, it provides flexibility by adapting to polymer and metal printing. In addition, it also has scalability, lower lighting costs, higher printing speeds, and the potential for layer stacking to create 3D structures, making it suitable for different manufacturing environments. Finally, due to the use of high numerical aperture oil immersed lenses with superluminescent light, it provides excellent resolution, thereby enhancing oblique light capture and improving printing resolution.

The potential commercial applications of this solution are diverse and have broad prospects. They include micro optical devices for quantum devices, which can fundamentally change various fields by improving the performance of quantum technology. The application of plane optics and photonic quantum devices in photonics provides new avenues for advanced optical systems. In addition, this solution may help to produce printed structures for photoconductive chips, which are key components of technologies such as laser radar systems used in autonomous vehicle, thus contributing to the progress of autonomous vehicle. In addition, this technology can also be used to develop microfluidic chips and micro robots for biomedical and drug delivery applications, thereby achieving precise and efficient delivery mechanisms at the microscale. In addition, it has broad prospects in the field of printed electronics, helping to manufacture electronic components with complex designs and functions. Finally, printed batteries represent another potential application, providing customizable and compact power solutions for various devices and systems. Overall, the versatility of this solution has opened up numerous business opportunities for various industries.

Source: Laser Net

관련 추천
  • Fraunhofer ILT develops laser beam shaping platform to optimize PBF-LB process

    Recently, the German research institution Fraunhofer ILT team is collaborating with the Department of Optical Systems Technology (TOS) at RWTH Aachen University to develop a testing system aimed at studying complex laser beam profiles using a new platform. This platform can construct customized beam profiles for laser powder melting (PBF-LB) 3D printing, thereby improving part quality, process sta...

    2024-12-23
    번역 보기
  • New Progress: III-V Laser and Silicon Optics Technology Achieve Single Chip High Integration

    Recently, Scientific Photonics, a supplier of silicon photonic integrated circuits (PICs) headquartered in Grenoble, announced that it has successfully integrated III-V-DFB lasers and amplifiers with standard silicon photonic technology into the production process of Tower Semiconductor.By utilizing proprietary technology and standard silicon photonics, Scientific Photonics has achieved full inte...

    2024-03-01
    번역 보기
  • Laser link between European Space Agency containers and space

    The latest expansion of the European Space Agency's laboratory is essentially portable: this European Space Agency's mobile optical ground station is housed in a standard container and can be transported throughout Europe as needed for laser based optical communication with satellites - including NASA's Psyche mission, in space millions of kilometers away.The station has officially become a part o...

    2024-02-12
    번역 보기
  • Xunlei Laser 20000W Large Format Laser Cutting Machine Winning the Bid for YD Company, a Famous Enterprise in the Steel Structure Industry

    Recently, the Xunlei Laser HI series 20000W large format laser cutting machine won the bid of YD Company, a well-known steel structure company, to help YD steel structure improve quality, efficiency, and green transformation!Established in 2009, YD Steel Structure is a large-scale specialized steel formwork enterprise that has established deep business partnerships with leading construction indust...

    2023-11-06
    번역 보기
  • Demonstrating broadband thermal imaging using superoptical technology in a new framework

    The research team used a new reverse design framework to demonstrate ultra optical broadband thermal imaging for applications ranging from consumer electronics to thermal sensing and night vision.The new framework, known as the "Modulation Transfer Function" project, solves the challenges related to broadband metaoptics by determining the functional relationship between image contrast and spatial ...

    2024-03-19
    번역 보기