한국어

Laser link between European Space Agency containers and space

380
2024-02-12 20:26:15
번역 보기

The latest expansion of the European Space Agency's laboratory is essentially portable: this European Space Agency's mobile optical ground station is housed in a standard container and can be transported throughout Europe as needed for laser based optical communication with satellites - including NASA's Psyche mission, in space millions of kilometers away.

The station has officially become a part of the Atomic Energy Agency's Optics and Optoelectronics Laboratory and will serve as a flexible testing platform for optical communication hardware and systems. ETOGS can also support other activities that require observing the sky with telescopes or pointing lasers at the sky, such as space debris monitoring or determining orbits through laser ranging.

ETOGS consists of a standard 6-meter long container that has been customized to accommodate telescopes with a diameter of 80 centimeters in the lifting platform and climate control operator area. Laser emitters, receivers, and other required equipment can be connected to this flexible structure to serve each specific activity. The station is hauled by trucks and can be deployed anywhere needed, powered by power accessories, diesel generators, or solar cell modules.

European Space Agency optoelectronic engineer Jorge Pires explained, "The creation of this station is indeed to meet the needs of the rapidly developing optical communication community for flexible testing platforms, rather than being deployable in representative ground environments. One of the most relevant issues in optical communication is to what extent the surrounding environment affects the quality of the link, such as background light in urban areas or atmospheric turbulence caused by weather.".

When it comes to receiving signals from quantum communication systems, this is most crucial because the amount of light involved is very low, and information is transmitted through a single photon. With this station, we can truly start answering these questions by operating at many different locations. By providing our partners with such ready-made testing platforms, we support hardware validation and iteration without the high development costs of using dedicated ground stations.

Optics and quantum technology are expected to completely change connections on a global scale. By using optical pulses with frequencies much higher than radio waves, optical communication can transmit more data at a given moment. Optical communication through optical fiber cable is the foundation of modern terrestrial Internet infrastructure, but the link with satellite still depends on low frequency and low bandwidth radio waves to a large extent.

By utilizing the quantum properties of light, systems such as quantum key distribution will help protect data to a level previously unimaginable; The physical properties of light particles protect the security of encryption key exchange, enabling message transmission to resist eavesdropping by malicious actors.

Jorge added, "The 80cm telescope at this station is the baseline size for quantum key distribution on a commercial scale, so we expect the station to be used to demonstrate and validate satellite based quantum communication.".

The first operational mission of this new European Space Agency asset will be to support the deep space optical communication demonstration of NASA's planned Psyche mission in 2025.

The European Space Agency is collaborating with a European consortium and the National Observatory of Athens to develop and deploy ETOGS at Kryoneri Observatory in Greece to accommodate multi beam ground laser emitters.

Source: Laser Net

관련 추천
  • Progress made by the Precision Measurement Institute in Thorium Ion Trapping Research

    Recently, the Cold Molecular Ion Research Group of the Institute of Precision Measurement has made significant progress in the loading, trapping, and recognition of thorium ions. The related research results have been published as cover and selected articles in the international physics journal Journal of Applied Physics, titled "Loading and identifying variable charged thorium ions in a linear io...

    2024-06-21
    번역 보기
  • Telescope Discovers Record breaking Galaxy Space Laser

    A powerful telescope in South Africa has detected a space laser 5 billion light-years away from Earth, known as the "megamaser". Scientists named it Nkalakatha, which means "big boss" in Zulu language.Nkalakatha is the farthest hydroxyl giant detected so far, discovered by the MeerKAT telescope on the first night of the survey, which is expected to include 3000 hours of observation. The team of sc...

    2024-03-09
    번역 보기
  • Researchers have successfully developed the world's first superconducting broadband photon detector

    Researchers at the National Institute of Information and Communication Technology in the United States have invented a new structure of a superconducting strip photon detector that can achieve efficient photon detection even in wide strips, and have successfully developed the world's first superconducting wide strip photon detector.The band width of the detector is more than 200 times that of trad...

    2023-11-02
    번역 보기
  • The Institute of Physics, Chinese Academy of Sciences has made significant progress in the research of lithium niobate nanooptics

    In recent years, breakthroughs in the preparation technology of lithium niobate single crystal thin films have greatly promoted the important application of lithium niobate crystals in micro nano optical devices such as optical metasurfaces. However, the high hardness and inactive chemical properties of lithium niobate crystals pose significant challenges to micro nano processing; In addition, con...

    04-15
    번역 보기
  • Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory Achieves New Breakthrough

    On February 7th, at the Wuhan Semiconductor Laser Equipment Industry Innovation Joint Laboratory located in the HGTECH Technology Intelligent Manufacturing Future Industrial Park, Huang Wei, the technical director of the laboratory and the director of HGTECH Technology's semiconductor product line, gestured with his hands to introduce the principle of "glass through-hole technology" to Changjiang ...

    02-18
    번역 보기