한국어

Scientists build high-power cladding-pumped Raman fiber laser in 1.2 μm band

901
2024-01-31 13:58:14
번역 보기

Laser sources operating in the 1.2 μm band have some unique applications in photodynamic therapy, biomedical diagnostics, and oxygen sensing. In addition, they can be used as pump sources for mid-infrared optical parameter generation and visible light generation through frequency doubling.

Laser generation in the 1.2 μm band has been achieved by different solid-state lasers, including semiconductor lasers, diamond Raman lasers, and fiber lasers. Among these three types, fiber lasers are an excellent choice for generating 1.2 μm band lasers due to their simple structure, good beam quality, and flexible operation.

Researchers led by Professor Pu Zhou from the National University of Defense Technology in China are interested in high-power fiber lasers in the 1.2μm band. Most of the current high-power fiber lasers are ytterbium-doped fiber lasers in the 1 μm band, and the maximum output of the 1.2 μm band is limited to 10 watts.

Their research, titled "High-Power Tunable Raman Fiber Laser in the 1.2 μm Band," was published in Frontiers in Optoelectronics.

Their idea is to use the stimulated Raman scattering effect in passive optical fibers to obtain high-power laser generation in the 1.2μm band. The stimulated Raman scattering effect is a third-order nonlinear effect that converts photons to longer wavelengths.

By exploiting the stimulated Raman scattering effect in phosphorus-doped optical fiber, the researchers converted the high-power ytterbium-doped fiber in the 1 μm band to the 1.2 μm band. A Raman signal with a power of 735.8 W was obtained at 1252.7 nm, which is the highest output power ever reported for a 1.2 μm band fiber laser.

Source: Laser Network


관련 추천
  • How to precisely control the cavity length of gallium nitride based vertical cavity surface emitting lasers?

    Gallium nitride (GaN) vertical cavity surface emitting laser (VCSEL) is a semiconductor laser diode with broad application prospects in various fields such as adaptive headlights, retinal scanning displays, nursing point testing systems, and high-speed visible light communication systems. Their high efficiency and low manufacturing costs make them particularly attractive in these applications.Gall...

    2024-06-12
    번역 보기
  • Free space nanoprinting beyond optical limitations can create 4D functional structures

    Two photon polymerization is a potential method for nanofabrication of integrated nanomaterials based on femtosecond laser technology. The challenges faced in the field of 3D nanoprinting include slow layer by layer printing speed and limited material selection due to laser material interactions.In a new report in Progress in Science, Chenqi Yi and a team of scientists in the fields of technical s...

    2023-10-09
    번역 보기
  • TRUMPF machine cooler saves 50 percent energy

    Ditzingen, 05. March 2025 – At its in-house exhibition INTECH, high-tech company TRUMPF is showcasing a new cooler for its laser cutting machines. The new unit is capable of reducing energy consumed during the cooling process and uses fifty percent less energy than conventional solutions. Unlike conventional coolers, the main components of this new solution— such as pumps, fans and compressors— ar...

    03-14
    번역 보기
  • Coherent lasers will help expand the scale of fusion tokamaks

    Coherent company's excimer lasers can be more widely used in fusion reactor applications, after the US based photonics giant signed a "letter of intent" with Japan's Faraday 1867 Holdings.Faraday 1867, headquartered in Kanagawa Prefecture, is said to have become the world's leading manufacturer of high-temperature superconducting (HTS) tape through its subsidiary Faraday Japan factory.This tape is...

    2023-10-11
    번역 보기
  • Researchers have created the first organic semiconductor laser that can be operated without the need for a separate light source

    Researchers at the University of St. Andrews in Scotland have manufactured the first organic semiconductor laser to operate without the need for a separate light source - which has proven to be extremely challenging. The new all electric driven laser is more compact than previous devices and operates in the visible light region of the electromagnetic spectrum. Therefore, its developers stated that...

    2023-11-15
    번역 보기