한국어

CO2 laser cutting machine for battery shell shaped parts: an innovative tool in energy technology manufacturing

350
2023-12-25 14:01:12
번역 보기

The development of new energy technology has made battery technology the engine for advancing clean energy. In battery manufacturing, the cutting of battery shell shaped parts is a crucial step. CO2 laser cutting machines have become an innovative tool for promoting the development of this field due to their high efficiency and precision. This article will delve into the important characteristics of this laser technology and its key role in battery manufacturing.

The manufacturing of battery shell shaped parts involves complex shapes and contours, and traditional cutting methods are difficult to meet high-precision and shaped requirements. CO2 laser cutting achieves precise and clear cutting of various irregular parts through highly focused laser beams. This high precision directly affects the quality and performance of battery packaging, making the battery more reliable under extreme conditions.

CO2 laser cutting machines have a high level of automation. With the help of advanced CNC technology, automatic cutting is achieved through preset programs without the need for complex manual operations. Improve production efficiency while reducing the impact of human factors, ensuring the consistency and quality of battery shell shaped parts.

The thermal impact during laser cutting is minimal, reducing material thermal deformation and maintaining cutting edge accuracy. This is a significant breakthrough in the manufacturing of batteries with high packaging requirements.

CO2 laser cutting machines also face challenges in application, such as high investment costs and operational difficulties. The industry needs to work together to increase research and development promotion efforts and promote its widespread application in the field of battery manufacturing.

Source: Laser Net

관련 추천
  • Shanghai Institute of Optics and Mechanics has made progress in studying the structure and properties of aluminum phosphate glass

    Recently, Hu Lili, a research team of the High Power Laser Unit Technology Laboratory of the Chinese Academy of Sciences Shanghai Institute of Optics and Fine Mechanics, used a method combining experiment, molecular dynamics simulation and quantitative structure property relationship analysis (QSPR) to study aluminum phosphate glass, and the related research results were published in the Journal o...

    2023-09-15
    번역 보기
  • Xi'an Institute of Optics and Fine Mechanics has made new progress in the field of metasurface nonlinear photonics

    Recently, the Research Group of Nonlinear Photonics Technology and Applications in the State Key Laboratory of Transient Optics and Photonics Technology of Xi'an Institute of Optics and Fine Mechanics has made important progress in the field of super surface nonlinear photonics. Relevant research results were published in the internationally famous journal Nanoscale Horizons. The first author of t...

    2024-09-27
    번역 보기
  • Researchers have demonstrated a breakthrough boson sampling method using ultracold atoms in optical lattices

    JILA researcher, National Institute of Standards and Technology (NIST) physicist, physics professor Adam Kaufman and his team at the University of Colorado Boulder, as well as NIST collaborators, demonstrated a new method of cross laser beam lattice sampling using ultracold atoms for boson sampling in two-dimensional optics. This study, recently published in the journal Nature, marks a significant...

    2024-05-10
    번역 보기
  • Researchers successfully 3D printed polymer based robotic arms through laser scanning

    Researchers from the Federal Institute of Technology in Zurich and an American startup used slow curing plastic to develop durable and sturdy robots using high-quality materials.The team can now print these complex robots at once and combine soft, elastic, and rigid materials together. This allows for the creation of precision structures and parts with cavities as needed.Inkbit, a derivative compa...

    2023-11-16
    번역 보기
  • Cambridge University researchers use lasers to "heat and strike" 3D printed steel

    According to the University of Cambridge, researchers have developed a new method for 3D printing metal, which can help reduce costs and more effectively utilize resources. This method, developed by a research team led by the University of Cambridge, allows structural modifications to be "programmed" into metal alloys during 3D printing - fine-tuning their performance without the need for thousand...

    2023-11-03
    번역 보기