한국어

Scientists from the SLAC National Accelerator Laboratory in the United States have launched the world's most powerful X-ray laser

368
2023-11-17 14:08:46
번역 보기

Scientists at the SLAC National Accelerator Laboratory have launched the world's most powerful X-ray laser, which will be used for in-depth atomic and molecular research.

It is a significant upgrade to its predecessor, as its brightness has increased by 10000 times.
The upgraded laser facility also uses superconducting accelerator components, allowing it to operate at low temperatures near absolute zero degrees Celsius.

Scientists from a high-tech facility on the West Coast of the United States have launched the world's most powerful X-ray laser for the first time. With these ultra bright X-ray pulses, they will conduct measurements, which will enable us to understand the atomic and molecular worlds.

The LCLS-II facility is an upgraded version of the linear accelerator coherent light source. It is located at the SLAC National Accelerator Laboratory of the US Department of Energy, near Stanford University in Menlo Park, California. LCLS-II is a so-called free electron laser, which means it accelerates the electron beam to near the speed of light and then sends the electron beam through a series of magnetic fields. These magnetic fields cause the path of electrons to oscillate, and due to these oscillations, electrons emit very strong X-rays, which can be used to image molecules and other things and observe how the atoms inside interact.

LCLS-II can emit up to 1 million X-ray pulses per second, 8000 times more than early LCLS lasers. When the increased pulse rate is combined with an increase in the number of electrons per pulse, the brightness of the new facility is more than 10000 times that of its predecessor.

Each pulse is very short. For high-energy X-rays, the pulse range is 10 to 50 femtoseconds; For low energy X-rays, the pulse can be stretched to 250 femtoseconds. It can also generate very short pulses, although in such a short period of time, each pulse is not as bright as usual.

With such short wavelengths, short pulses, and rapid repetition, scientists can use this facility to observe the occurrence of chemical reactions. Essentially, each pulse can image the configuration of the atoms involved in the reaction, and then link individual images together, much like a molecular clay film. As early as 2018, the LCLS facility was able to produce a movie about the chemical processes that occur in human vision and photosynthesis. The entire process only takes 1000 femtoseconds.

More broadly, the LCLS-II facility will be able to withstand up to one angstrom. This ability will enable researchers to study many different atomic processes, from those in biological systems to those in photovoltaic and fuel cells. Laser will also help illuminate superconductivity, ferroelectricity, and magnetism.

A very cool technology
One of the key components of upgrading is the installation of revolutionary technologies. Although early accelerators operated at room temperature, the upgraded LCLS-II used superconducting accelerator components, which allowed it to operate at low temperatures near absolute zero. LCLS-II also has better magnets to swing the electron beam.

Although LCLS-II has just started operating, the success of early LCLS accelerators has given researchers optimism. More than 3000 scientists have used the facility and published over 1450 publications. Time will reveal any new insights that this powerful laser possesses.

Source: Laser Network

관련 추천
  • The researchers expect the EUV lithography market to grow from $9.4 billion in 2023 to $25.3 billion in 2028

    The researchers estimate the period from 2023 to 2028. EUV lithography will address the limitations of traditional optical lithography, which has reached its physical limits in terms of resolution. The shorter wavelength of EUV light allows for the creation of smaller features and tighter patterns on silicon wafers, enabling the manufacture of advanced microchips with greater transistor densities....

    2023-08-04
    번역 보기
  • Optical Capture of Optical Nanoparticles: Fundamentals and Applications

    A new article published in Optoelectronic Science reviews the basic principles and applications of optical capture of optical nanoparticles. Optical nanoparticles are one of the key elements in photonics. They can not only perform optical imaging on various systems, but also serve as highly sensitive remote sensors.Recently, the success of optical tweezers in separating and manipulating individual...

    2023-11-25
    번역 보기
  • MedWorld Advisors acquires stakes in two companies to establish MedTech Laser Group

    Recently, MedWorld Advisors, an internationally renowned healthcare M&A consulting firm, is pleased to announce the establishment of a new medical laser company, MedTech Laser Group, by acquiring shares in two similar companies.The birth of MedTech Laser Group originated from A. in Nuremberg, Germany R. C Laser GmbH and G. from Caesarea, Israel (adjacent to Tel Aviv) N. The successful acquisit...

    2024-08-12
    번역 보기
  • University of Science and Technology of China realizes quantum elliptical polarization imaging

    Recently, the team led by Academician Guo Guangcan from the University of Science and Technology of China has made significant progress in the research of quantum elliptical polarization imaging. The research group of Professor Shi Baosen and Associate Professor Zhou Zhiyuan combined high-quality polarization entangled light sources with classical polarization imaging technology to observe the bir...

    04-14
    번역 보기
  • The use of laser equipment to recover refractory materials can reduce 800,000 tons of carbon dioxide emissions

    Refractory material can withstand high temperature above 1500℃. They are essential materials for industrial furnaces that produce glass or ceramics, non-ferrous metals and steel. The service life of manufactured refractory products can range from a few days to many years, depending on the material, the temperature in the melting vessel and other operating parameters. As a result, although ...

    2023-09-04
    번역 보기