한국어

Fundamentals of Next Generation Photonic Semiconductors: Small Lasers

862
2023-11-13 14:05:18
번역 보기

This week, an illustration was published on the cover of the international journal Science, showcasing a powerful mode-locked laser emitted from a miniature photonic semiconductor.

A research team led by Alireza Marandi, a professor of electrical engineering and applied physics at the California Institute of Technology, has successfully developed a conventional mode-locked laser large enough to fit into microchips, which was published in the journal Science on the 9th local time.

MLL is a laser that generates powerful microwave light. Through microwave light, details of femtosecond and attosecond natural phenomena can now be observed, which were previously unseen.

By using these short laser pulses, microstructure that cannot be observed by an optical microscope can be identified. Imaging can be performed on the internal tissues of cancer lumps and the photosynthesis process in plant leaves. That's why MLL is also known as the foundation of modern accelerator research and technology.

However, so far, MML has only been developed in a cumbersome form, which limits its application in chip level nano optical devices that handle very little light in a very small space.

The research team has developed a "small mode locked laser" based on lithium niobate. The MML developed by the research team works at the nanoscale and measures much higher pulse energy and peak power compared to the MLL used in existing nano optical platforms.

The journal Science published the study on its cover and commented that the development of this technology will reduce the size of existing MLLs to the size of chips, stimulating the development of photonic based semiconductors that surpass existing semiconductor levels.

Photonic semiconductors use light instead of electricity and are considered the next generation technology because they can transmit data tens of times faster than existing devices while reducing power consumption. Especially, it is expected to be combined with artificial intelligence and high-performance sensors to achieve rapid information transmission and reception.

Source: Laser Network

관련 추천
  • Automated methods for background estimation in laser spectroscopy

    A new automated method for spectral background estimation in laser spectroscopy ensures the accuracy of quantitative analysis with minimal human intervention.When using laser-induced breakdown spectroscopy in spectral analysis, scientists may encounter various obstacles. The most common challenge faced by scientists when conducting elemental analysis is to optimize the interaction between the lase...

    2023-11-24
    번역 보기
  • Micro ring resonators with enormous potential: hybrid devices significantly improve laser technology

    The team from the Photonic Systems Laboratory at the Federal Institute of Technology in Lausanne has developed a chip level laser source that can improve the performance of semiconductor lasers while generating shorter wavelengths.This groundbreaking work, led by Professor Camille Br è s and postdoctoral researcher Marco Clementi from the Federal Institute of Technology in Lausanne, represe...

    2023-12-11
    번역 보기
  • The researchers expect the EUV lithography market to grow from $9.4 billion in 2023 to $25.3 billion in 2028

    The researchers estimate the period from 2023 to 2028. EUV lithography will address the limitations of traditional optical lithography, which has reached its physical limits in terms of resolution. The shorter wavelength of EUV light allows for the creation of smaller features and tighter patterns on silicon wafers, enabling the manufacture of advanced microchips with greater transistor densities....

    2023-08-04
    번역 보기
  • China has successfully developed the world's first 193 nanometer compact solid-state laser

    The Chinese Academy of Sciences reduced the volume of the deep ultraviolet laser by 90% and achieved 193 nm vortex beam output for the first time. Professor Xuan Hongwen described "loading truck equipment into the car trunk". This technology enables a 30% reduction in the size of lithography features, breaking through the bottleneck of the 2-nanometer process. In the next three years, laser power ...

    03-24
    번역 보기
  • Laser manufacturer DIT signs KRW 20.52 billion agreement

    Recently, DIT, a well-known semiconductor and display equipment manufacturer in South Korea, announced that the company has signed an agreement worth 20.52 billion Korean won to supply wafer processing equipment to SK Hynix. After the announcement, DIT's stock price rose for five consecutive days, entering the 16000 Korean won range. Then on the 22nd, it rose 2580 Korean won from the previous day'...

    02-15
    번역 보기