한국어

Fundamentals of Next Generation Photonic Semiconductors: Small Lasers

395
2023-11-13 14:05:18
번역 보기

This week, an illustration was published on the cover of the international journal Science, showcasing a powerful mode-locked laser emitted from a miniature photonic semiconductor.

A research team led by Alireza Marandi, a professor of electrical engineering and applied physics at the California Institute of Technology, has successfully developed a conventional mode-locked laser large enough to fit into microchips, which was published in the journal Science on the 9th local time.

MLL is a laser that generates powerful microwave light. Through microwave light, details of femtosecond and attosecond natural phenomena can now be observed, which were previously unseen.

By using these short laser pulses, microstructure that cannot be observed by an optical microscope can be identified. Imaging can be performed on the internal tissues of cancer lumps and the photosynthesis process in plant leaves. That's why MLL is also known as the foundation of modern accelerator research and technology.

However, so far, MML has only been developed in a cumbersome form, which limits its application in chip level nano optical devices that handle very little light in a very small space.

The research team has developed a "small mode locked laser" based on lithium niobate. The MML developed by the research team works at the nanoscale and measures much higher pulse energy and peak power compared to the MLL used in existing nano optical platforms.

The journal Science published the study on its cover and commented that the development of this technology will reduce the size of existing MLLs to the size of chips, stimulating the development of photonic based semiconductors that surpass existing semiconductor levels.

Photonic semiconductors use light instead of electricity and are considered the next generation technology because they can transmit data tens of times faster than existing devices while reducing power consumption. Especially, it is expected to be combined with artificial intelligence and high-performance sensors to achieve rapid information transmission and reception.

Source: Laser Network

관련 추천
  • In situ bubble point measurement using spectroscopy

    Develop and research a new downhole bubble point pressure measurement technology suitable for black oil and volatile oil to enhance well analysis using spectroscopy.Representative fluid characteristics are required for a wide range of oilfield lifespans, such as the initial scale and production planning of reservoir hydrocarbon reserves. Fluid characteristics are usually obtained from laboratory s...

    2024-01-31
    번역 보기
  • Is CTC technology in the booming new energy industry likely to disrupt the fiber laser industry?

    Recently, the term CTC technology has become a hot topic in the new energy vehicle industry. During the relatively slow period of electrochemical innovation, this structural innovation effectively helped the new energy industry reduce costs and increase efficiency, while also increasing the range of new energy vehicles to a certain extent. However, recently the author learned that the concept of C...

    2023-09-18
    번역 보기
  • Intel: Has acquired most of ASML's NA extreme ultraviolet lithography equipment in the first half of next year

    According to Korean media reports, Intel has acquired most of the high numerical aperture (NA) extreme ultraviolet (EUV) lithography equipment manufactured by ASML in the first half of next year.ASML plans to produce 5 high NA EUV lithography equipment this year, all of which will be supplied to Intel.They stated that ASML has an annual production capacity of approximately 5-6 High Numerical Apert...

    2024-05-21
    번역 보기
  • It is said that laser additive manufacturing is good, but what is the advantage?

    When it comes to additive manufacturing, some people may not have heard of it, but when it comes to its other name: 3D printing, no one is unaware.In fact, the name 'additive manufacturing' better illustrates the essence of this processing method. From ancient times to the present, humans have put in great effort to achieve the goal of processing 'raw materials into the shapes we need'. From the S...

    2023-11-08
    번역 보기
  • The scientific research team has proposed a modeless Raman fiber laser using a traditional resonant cavity structure

    The pump source, gain material, and resonant cavity are the three elements that make up a laser. Due to the selective effect of the resonant cavity on the lasing frequency, multi longitudinal mode operation is one of the characteristics of fiber lasers based on traditional resonant cavity structures, manifested as periodic beat peaks in the radio frequency (RF) spectrum and periodic fluctuations i...

    2023-08-15
    번역 보기