한국어

NSF funding for collaboration between researchers from Syracuse University and Cosmic Explorer

319
2023-10-13 14:58:45
번역 보기

Billions of years ago, in a distant galaxy, two black holes collided, triggering one of the most extreme cosmic events in the universe. The power of this phenomenon is so great that it distorts the structure of spacetime, emitting ripples called gravitational waves.

These waves will eventually be detected on Earth by the Advanced Laser Interferometer Gravity Wave Observatory (LIGO) detector, and teachers from Syracuse University played a leading role in this major discovery. Although members of the university's gravitational wave group spent some time celebrating this incredible feat, they immediately began to think about how to build a new observatory that would enable them to explore more regions of the universe using gravitational waves.

The Space Explorer is the next generation gravitational wave observatory designed by the Center for Gravitational Wave Astronomy and Astrophysics (CGWAA) at Syracuse University. CGWAA was established this autumn as a center for university students and teachers, playing a major role in the design and operation of the Gravity Wave Observatory. The CGWAA team collaborated with scientists from Massachusetts Institute of Technology, Pennsylvania State University, California State University at Fullerton, and the University of Florida, hoping that the Space Explorer could begin exploring the universe in the mid-1930s.

In order to properly view the functionality of Cosmic Explorer, Advanced LIGO has detected approximately 100 black hole collisions since 2015, while Cosmic Explorer will be able to detect every collision in the visible universe - approximately 100000 times a year, or every five minutes. Space explorers will also see about one million neutron stars merging each year, enabling scientists to understand the properties of nuclear matter and the production of heavy elements.

Gravity wave detectors, such as the Space Explorer, are large interferometers. Interferometry is an extremely sensitive measurement technique that uses mirrors, laser beams, and interference (the addition or removal of combined beams) to measure the displacement of mirrors caused by gravitational wave patterns. Advanced detectors help researchers map black holes in the universe, which was previously impossible to achieve with telescopes because unlike stars, black holes do not produce light.

In October 2022, Cosmic Explorer project partners gathered at the Minnobrook Convention Center at Syracuse University to hold a proposal writing seminar, which received over $9 million in federal funding for the project. As part of the NSF commitment, Syracuse University will receive funding of $1.64 million over the next three years.

Recently, researchers from the School of Arts and Sciences who received funding for the Cosmic Explorer project include Stefan Ballmer, a professor of physics and founding director of CGWAA; Georgia Mansell, Assistant Professor of Physics; Craig Cahillane, Professor of Physics Research; Professor Josh Russell and Professor Christopher Scholz from the Department of Earth and Environmental Sciences, whose funding will involve the site evaluation of the proposed observatory.

Without the support of the National Science Foundation, this important task would not have been possible, "Ballmer said. When we established the Center for Gravitational Wave Astronomy and Astrophysics, our idea was to strengthen Syracuse University's position as a pioneer in the field of gravitational wave detection. The awards presented by NSF confirm this commitment and will make the center a key participant in promoting the success of the Space Explorer project.

Source: Laser Network

관련 추천
  • AMC Theatres launches advanced laser projection technology upgrades

    AMC Cinema has long been known as the largest cinema operator in the United States and the world, and has completed upgrades to almost all its venues in the broader Chicago area, including advanced laser projection technology.The technological reform of this chain of stores has made Chicago one of the first areas in AMC's footprint to benefit from CinIonic's cutting-edge projection technology.In e...

    2023-12-23
    번역 보기
  • The application of lasers in material processing has driven industrial progress in Santa Catalina state

    Laser material processing has been widely used in advanced industries, ranging from designing and producing lightweight, ultra wear-resistant parts and equipment with complex geometric shapes to repairing damaged or worn components through technologies such as 3D printing of deposited metal powders or deposits.Use laser pulses for surface treatment to prevent fatigue. But the impact of such techno...

    2023-09-26
    번역 보기
  • New research on achieving femtosecond laser machining of multi joint micromachines

    The team of Wu Dong, professor of the Micro/Nano Engineering Laboratory of University of Science and Technology of China, proposed a processing strategy of femtosecond laser two in one writing into multiple materials, manufactured a micromechanical joint composed of temperature sensitive hydrogel and metal nanoparticles, and then developed a multi joint humanoid micromachine with multiple deformat...

    2023-09-15
    번역 보기
  • Laser cladding method improves the surface performance of parts

    Laser cladding, also known as laser metal deposition, is a process of depositing one material onto another.When the laser beam scans the target surface, metal powder or wire flow is fed into the molten pool formed by the laser beam, thereby producing the required material coating.The laser cladding method improves the surface properties of the parts, such as wear resistance, and allows for the rep...

    2023-12-28
    번역 보기
  • Real time measurement of femtosecond dynamics of relativistic intense laser driven ultra-hot electron beams

    In the interaction between ultra short and ultra strong laser and matter, electrons with short pulse width and high energy are generated, commonly referred to as "hot electrons". The generation and transport of hot electrons is one of the important fundamental issues in high-energy density physics of lasers. Superhot electrons can excite a wide range of ultrafast electromagnetic radiation, as well...

    2024-04-30
    번역 보기