한국어

New progress in in-situ identification and quantitative research of methane carbon isotopes in the ocean

873
2023-10-13 14:11:54
번역 보기

Recently, Zhang Xin's research team from the Institute of Oceanography, Chinese Academy of Sciences, based on the in-situ laser Raman spectroscopy technology, made new progress in the in-situ recognition and quantification of methane carbon isotopes by using the significant differences in the Raman spectra of methane carbon isotopes (13CH4 and 12CH4). The relevant results were recently published in the international spectroscopy journal Spectra Acta Part A: Molecular and Biomolecular Spectroscopy.

The deep-sea hydrothermal system releases a large amount of reducing gases such as CH4 and H2, providing a unique community of chemosynthetic organisms, which is of great significance for studying the origin of early life. However, there is still great controversy over the source of such high concentration methane, such as the methane concentration in the "Rainbow" ultramafic hydrothermal system reaching up to 2.5mmol/kg, which is much higher than the methane production from water rock reactions in the laboratory.

The carbon isotope composition of CH4 is a powerful means of distinguishing biogenic and abiogenic methane, but existing experimental techniques and carbon isotope value testing methods cannot exclude the influence of background carbon sources, greatly affecting the reliability of the experiment. In recent years, the rapid development of in-situ Raman spectroscopy technology has made it possible to determine gas isotopes in situ. However, there is still a lack of Raman spectroscopy research on methane carbon isotopes in high-temperature and high-pressure hydrothermal systems.

In response to the above issues, the research team systematically studied the Raman spectral characteristics of 13CH4 and 12CH4 under high temperature and high pressure (25-400oC, 50-400 bar) pure CH4 system and CH4-H2O system using a capillary high-pressure transparent cavity. Research has shown that the peak position of the characteristic peak of 13CH4 is between 2907cm-1 and 2912cm-1, moving towards a lower wavenumber with increasing temperature and decreasing pressure; The characteristic peak of 12CH4 ranges from 2912cm-1 to 2917cm-1, consistently 4.6 to 5.1cm-1 higher than 13CH4 at the same temperature and pressure, indicating that the two can be distinguished well by Raman spectroscopy (Figure 1).

In addition, the research team also established Raman quantitative calibration models for the concentrations of 13CH4 and 12CH4 in aqueous solutions (Figure 2). The study showed that the differences in Raman scattering cross-sections between dissolved 13CH4 and 12CH4, rather than changes in water molar density or Raman scattering cross-sections, resulted in differences in their Raman quantitative calibration models. The relevant research results provide strong support for in-situ identification and quantitative analysis of the carbon isotope composition of methane, and have broad application prospects in high-temperature and high-pressure hydrothermal experiments and deep-sea in-situ detection.

The first author of the paper is Ge Yuzhou, a doctoral candidate from the Institute of Oceanography, Chinese Academy of Sciences, and researcher Zhang Xin is the corresponding author of the article. The research was jointly supported by the National Natural Science Foundation of China and the Chinese Academy of Sciences Class A strategic pilot project.

The relevant achievements and links are as follows:
Ge, Y., Li, L., Xi, S., Zhang, Y., Luan, Z., and Zhang, X., 2023, Comparison of Raman spectral characteristics and quantitative methods between 13CH4 and 12CH4 from 25 to 400 °C and 50 to 400 bar: Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, p. 123380.

Figure 1: Peak positions and full width at half height of characteristic peaks of 13CH4 and 12CH4 at different temperatures and pressures

Figure 2 Raman quantitative calibration models for 13CH4 and 12CH4 based on water OH bending vibration band (a) and stretching vibration band (b)

Source: Institute of Oceanography, Chinese Academy of Sciences

관련 추천
  • Researchers have discovered a new method to improve the resolution of laser processing

    Customized laser beams focused through transparent glass can generate a small dot inside the material. Researchers from Northeastern University have reported a method of using this small spot to improve laser material processing and increase processing resolution.Their research results are published in the journal Optics Letters.Laser processing, like drilling and cutting, is crucial in industrie...

    2024-03-28
    번역 보기
  • TRUMPF high-power laser dynamic beam shaping technology creates opportunities for the electric vehicle industry

    It is reported that researchers from TRUMPF in Germany reported research on using dynamic beam shaping of high-power lasers to improve the productivity of hairpin stators, creating opportunities for the electric vehicle industry. Relevant research was published in "PhotonicsViews" under the title "Unlocking opportunities for the EV industry with beam shaping of high-power lasers".The electric vehi...

    2024-07-01
    번역 보기
  • Laser surface treatment of Ti6Al4V alloy: finite element prediction of melt pool morphology and microstructure evolution

    Researchers from the University of Calabria, University of Salento, and LUM University in Italy have reported on the progress of finite element prediction research on laser surface treatment of Ti6Al4V alloy: melt pool morphology and microstructure evolution. The related research was published in The International Journal of Advanced Manufacturing Technology under the title "Laser surface treatmen...

    04-10
    번역 보기
  • Unsupervised physical neural network empowers stacked imaging denoising algorithm

    In view of the reconstruction problem of stack imaging technology in noisy environment, Lin Nan's team from Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences, proposed an innovative method ProPtyNet based on unsupervised physical neural network, which is expected to be applied to chip CD measurement and defect detection. The article was published in Optics and lasers in engin...

    03-25
    번역 보기
  • Top management changes at Laser Photonics Corp., a US laser equipment manufacturer

    Recently, Laser Photonics Corp. (LPC), a Nasdaq listed equipment developer, announced that it has appointed John T. Armstrong as its new Executive Vice President. Before assuming his position at LPC, Armstrong served as Vice President of Astronics Test Systems, a subsidiary of Astronics Corporation, a global leader in advanced technology and products in critical mission areas such as aerospace a...

    2024-11-20
    번역 보기