한국어

Kearns Launches 3-Axis Controlled UV Laser Marking Machine to the UK Market

195
2023-10-09 13:59:36
번역 보기

Recently, Keyence announced that it has delivered the MD-U series of 3-axis controlled UV laser marking machines to its UK customers. This product technology utilizes ultraviolet lasers with high absorption rates to perform cold labeling on various materials - a process that can be carried out under minimum thermal stress.

UV laser is generated by passing a standard wavelength laser (1064nm) through a nonlinear crystal and then reducing the wavelength size to (355nm) through third harmonic generation (THG) through another crystal.

As the demand for more complex products and diverse materials increases, Keinz has developed triaxial lasers to meet the demand for higher quality and more stable results. The company stated that lasers can achieve high contrast and uniform labeling on materials that were previously difficult to label. These operations can be performed at 330 × On an area of 330 millimeters, while reducing costs and simplifying the processing process.

This 3-axis UV laser marking machine can be used to generate high contrast markings on various materials, such as plastic, glass, and other thermosensitive materials. The marking head of the MD-U includes an embedded multifunctional camera that can automatically focus on a part, check the quality of the marking, and read the 2D code. By tracking unintentional deviations in target height or tilt, it is possible to prevent marking defects throughout the entire marking area.

Kearns also stated that its maximum operating speed in standard areas is 12000 mm/s, with built-in proprietary digital scanners and different quality adjustment levels, making the laser work faster than traditional models. At the same time, pattern selection software can customize and edit materials.

Kearns has developed the aforementioned laser using its proprietary sealing method, ensuring that its components have environmentally friendly performance and are not affected by factors such as dirt, dust, and water droplets.

In fact, three-axis laser technology has potential applications in various industries, including the automotive industry - it can help develop plastic parts, cationic painted parts, and smaller parts. In the electronics industry, it can help manufacture LED lights, wafers, and more. In addition, it will be able to assist the medical industry in developing tablets, bottles, and instruments, as well as manufacturing shells for some products in the food/cosmetics industry.

Source: OFweek

관련 추천
  • Ultra fast laser tracking the "ballistic" motion of electrons in graphene

    Figure 1. The setup of Hui Zhao and his team at the University of Kansas Ultra Fast Laser Laboratory.A team of researchers from the University of Kansas's ultrafast laser laboratory recently managed to capture real-time ballistic transmission of electrons in graphene, which could lead to faster, more powerful, and more energy-efficient electronic devices in the future.The motion of electrons is of...

    2024-01-09
    번역 보기
  • Laser printing on fallen leaves can produce sensors for medical and laboratory use

    The manufacturing of sensors through 3D printing combines speed, design freedom, and the possibility of using waste as a substrate. In the circular economy model, various results have been achieved, and typically discarded residues are used as low-cost resources. A research team in Brazil has proposed a highly creative solution that involves printing electrochemical sensors on fallen leaves. The t...

    2024-05-16
    번역 보기
  • Coherent Company Launches Industry's First 1200 mW Pumped Laser Module for Optical Amplification in DWDM Networks

    Coherent Corporation, the leader in erbium-doped fiber amplifier pumped laser technology for deployment in optical networks, announced today the launch of the industry's first pumped laser module in a 10 pin butterfly package with an output power of 1200 mW.The rapid development of optical communication technology is reaching the theoretical limit of fiber capacity and driving the expansion of tr...

    2023-09-22
    번역 보기
  • Research progress on the interaction between strong laser and matter Electromagnetic induced transparency effect in plasma physics

    The transmission of electromagnetic waves (such as lasers) in plasma is a fundamental issue in plasma physics. In general, electromagnetic waves cannot be transmitted in high-density plasma, but their transmission and energy transfer play a crucial role in applications such as fast ignition laser fusion, laser particle acceleration, and ultra short and ultra bright radiation sources.In 1996, S. fr...

    2024-03-21
    번역 보기
  • Fiber laser array for single pixel imaging is expected to achieve remote detection

    Single pixel imaging (SPI) is a novel computational imaging technique that has been widely studied in recent years. This technology only uses single pixel detectors without spatial resolution to obtain spatial information of targets.It has unique advantages and compensates for the shortcomings of traditional imaging technologies based on array detectors, such as relatively immature or expensive ar...

    2024-05-15
    번역 보기