한국어

Scientists at St. Andrews University have made significant breakthroughs in compact laser research

649
2023-10-04 14:21:35
번역 보기

Scientists at St. Andrews University have made significant breakthroughs in compact laser research after decades of hard work.


Laser is widely used in fields such as communication, medicine, measurement, manufacturing, and measurement around the world. They are used to transmit information on the internet, for medical purposes, and even in facial scanners on mobile phones. Most of these lasers are made of rigid and brittle semiconductor crystals such as gallium arsenide.

Organic semiconductors are a relatively new type of electronic material. They have flexibility, are based on carbon and emit visible light, making the manufacturing of electronic devices simple. They are now widely used in OLED (Organic Light Emitting Diode) screens in most mobile phones.

One limitation of organic semiconductor lasers is that they typically require another laser to power them. For 30 years, researchers have been working hard to overcome this limitation, so scientists at the University of St. Andrews have recently developed an electrically driven organic semiconductor laser, which is particularly important.

The breakthrough achieved by the team, published in the journal Nature, first produced OLEDs with world record light output, and then tightly integrated them with polymer laser structures. This new type of laser emits a green laser beam composed of short light pulses.


At present, this is mainly a scientific breakthrough, but with future development, lasers may be integrated with OLED displays and allow communication between them, or used for spectroscopy to detect diseases and environmental pollutants.

Schematic diagram of the structure of an electrically driven organic semiconductor laser


Professor Ifor Samuel commented, "Manufacturing electrically driven lasers using organic materials is a huge challenge for researchers around the world. Now, after years of effort, we are pleased to have produced this new type of laser.


Professor Graham Turnbull added, "We hope that this new type of laser will consume less energy during the manufacturing process and will produce visible spectrum lasers in the future.

Source: Laser Network

관련 추천
  • Scientists have created a full spectrum white light laser with bright spot, smooth and flat spectrum, and large pulse energy characteristics

    Recently, the team led by Professor Li Zhiyuan from South China University of Technology has successfully developed a full spectrum white light laser, which has the characteristics of bright spot, smooth and flat spectrum, and large pulse energy. It can cover the ultraviolet visible infrared full spectrum of 300-5000nm, with a single pulse energy of 0.54mJ.The launch of such a full spectrum white ...

    2023-11-07
    번역 보기
  • Important Discovery in Aluminum Alloy Laser Coaxial Fusion Additive Manufacturing

    Aluminum alloy has unique advantages such as lightweight, high strength, and excellent corrosion resistance, and is highly favored in the aerospace manufacturing field. Laser Coaxial Fusion Additive Manufacturing (LCWAM) adopts beam shaping technology, which uses wire as the deposition material to melt and stack layer by layer. Compared to traditional side axis wire feeding technology, laser coaxi...

    2024-04-29
    번역 보기
  • Coherent and Faraday sign a partnership to expand the manufacturing scale of high-temperature superconducting (HTS) tapes

    Recently, American photonics giant Coherent and Japan's Faraday 1867 Holdings signed a Letter of Intent (LOI), with the goal of expanding the manufacturing scale of high-temperature superconducting (HTS) tapes to be widely used in large-scale deployment of nuclear fusion reactors, while also promoting the transformation of green energy. Coherent's excimer laser is expected to be more widely used i...

    2023-10-12
    번역 보기
  • MIT research enables 3D printers to recognize new materials

    According to scientists at MIT, mathematical formulas developed by MIT researchers and other institutions can significantly improve the sustainability of 3D printing.Issues with 3D printing of plastics3D printers typically use mass-produced polymer powders to print parts, which are consistent and predictable, but also difficult to recycle.Other more environmentally friendly options also exist and ...

    2024-04-18
    번역 보기
  • American scientists use light technology to control hypersonic jet engines

    According to the website "interesting engineering" on July 29th, a new study funded by the National Aeronautics and Space Administration (NASA) has revealed for the first time that the airflow in supersonic combustion jet engines can be controlled through optical sensors. This study was conducted by researchers from the School of Engineering and Applied Sciences at the University of Virginia.When ...

    2024-07-31
    번역 보기