한국어

Goethe, University of Central Florida research team showcases light and thin achromatic diffractive liquid crystal optical systems

846
2023-09-26 14:19:26
번역 보기

Headdisplay devices such as Apple Vision Pro, Meta Quest, and PICO are expected to completely change the way we perceive and interact with various digital information. By providing more direct interaction with digital information, MR has become one of the key driving forces for the metaverse, spatial computing, and digital twins, and has begun to be widely applied in fields such as intelligent tourism, intelligent healthcare, intelligent manufacturing, and intelligent buildings.

But in order to further enhance the ergonomics of MR, the industry must improve the overall user experience, especially long-term wear comfort. To achieve this goal, ultra compact and lightweight devices are key targets.

Recently, a team composed of Goethe Corporation and the University of Central Florida showcased an achromatic diffractive liquid crystal optical system with an ultra-thin and lightweight appearance.

The team pointed out that diffractive liquid crystal optical devices have the advantages of ultra-thin, lightweight, high diffraction efficiency (nearly 100%), easy manufacturing, polarization selectivity, and dynamic switching, making them highly promising optical components in the fields of virtual reality and hybrid reality.

Unlike refractive index optics that use optical path difference to generate phase maps, diffractive liquid crystal optical elements generate the required phase map by satisfying the half wave condition along the thickness direction. However, the diffraction angle of liquid crystal optical elements depends on the wavelength, which in turn leads to severe color difference and cannot be used for imaging purposes.

In order to overcome this long-standing color difference problem while maintaining an ultra-thin appearance, a team composed of Goethe Corporation and the University of Central Florida has proposed an achromatic liquid crystal optical system. The device consists of three stacked diffractive liquid crystal optical elements, which have specially designed spectral response and polarization selectivity.

In other words, in order to control the polarization state and correct color difference, the transmission spectrum and phase diagram of each optical element are carefully designed.

Among them, for the achromatic liquid crystal lens system that eliminates the focal shift between blue and red light, the first component is a broadband lens that displays high efficiency in the visible spectrum region; The second component is a half wave plate designed to switch the polarization state of blue light; The final component is an LC lens with a specially designed transmission spectrum, which is only effective for blue and red light.

The achromatic liquid crystal lens system can be achieved by simply stacking these three components together, and both achromatic grating and deflector systems can be constructed based on the same principle.

This concept has been validated through two different types of light engines: laser projectors and organic light-emitting diode display panels. The image of a single liquid crystal lens exhibits severe color difference, which is caused by the wavelength dependence of diffractive optical devices on optical power.

However, the achromatic lens system significantly improves color performance and greatly suppresses color difference. The experimental results indicate that two types of light engines, laser projectors and organic light-emitting diode display panels, have significantly improved imaging performance. In addition, simulation results show that compared to traditional broadband diffractive liquid crystal lenses, the lateral color shift is reduced by about 100 times.

Related Papers: Acoustic diffractive liquid crystal options for virtual reality displays
The team pointed out that by appropriately controlling the polarization state, this method can be extended to other types of diffractive optical devices, potentially achieving more compact optical components.

Source: Sohu

관련 추천
  • Nanchang University has made progress in intelligent photoacoustic tomography imaging

    Photoacoustic tomography (PAT) is a novel hybrid medical imaging technique that enables precise imaging of biological tissue structures at different spatial scales. It has been widely used in various fields, including brain imaging, cancer detection, and cardiovascular disease diagnosis. However, due to limitations in data acquisition conditions, photoacoustic tomography systems typically can only...

    2024-08-13
    번역 보기
  • Gas reduction technology of fiber laser helps to improve the cutting quality of low-carbon steel

    The Mitsubishi GX-F Advanced series of artificial intelligence enabled fiber lasers now use patented gas and burr reduction technology to help improve cutting quality while reducing gas consumption when cutting low-carbon steel.Mitsubishi Laser's proprietary Agr Mix nozzle technology does not require an external mixing tank or high-pressure oxygen. The combination of low-pressure air and nitrogen ...

    2024-02-14
    번역 보기
  • HGTECH Laser's New Product Debuts at the 2025 Munich Shanghai Light Expo

    New Product for Wafer Testing Probe Card Manufacturing Equipment Project This project adopts vision guided laser precision cutting to separate the probe from the crystal disk, and then generate a product mapping image for use in the next process. When picking up the probe, multi-point reference surface fitting technology is used to achieve non-contact probe suction and avoid force deformation. A...

    03-07
    번역 보기
  • The ECSTATIC fiber optic project worth 5.1 million euros aims to prevent bridge collapse

    A new European research project is exploring whether the same fibre-optic cables that carry our internet could also serve as real-time sensors for hidden damage in infrastructure, including bridges, railways, tunnels and energy pipelines. The €5.1 million ECSTATIC project, coordinated by Aston University in the UK, is trialling this breakthrough approach in a major UK city, using a heavily-used...

    08-18
    번역 보기
  • Researchers use liquid metal and laser ablation to create stretchable micro antennas

    Researchers have developed a new method of making micro stretchable antenna with water gel and liquid metal. These antennas can be used for wearable and flexible wireless electronic devices to provide links between devices and external systems for power transmission, data processing, and communication.Using our new manufacturing method, we have demonstrated that the length of liquid metal antennas...

    2023-09-19
    번역 보기