한국어

Coherent Unifies Ultrafast Laser Business at the Glasgow Center of Excellence

835
2023-09-22 14:21:53
번역 보기

Recently, Coherent, an American laser system solution provider, announced that all of the company's ultra fast laser business, including the manufacturing of all picosecond and femtosecond lasers, will be unified in one place: the Ultra Fast Center of Excellence in Glasgow, Scotland.

Previously, Coherent's Ultra Fast Center of Excellence located in Glasgow was already a state-of-the-art mass production facility focused on lean production. After recent expansion and renovation, it will accommodate all of the company's ultra fast laser businesses - flagship femtosecond lasers (such as the Coherent Monaco) and picosecond lasers (such as the Rapid and HyperRapid series), which will now be produced at this factory.

Chris Dorman, Executive Vice President of Coherent Laser Business, said, "Creating this extended Center of Excellence will achieve incredible cross product collaboration and standardization of components and processes, and will enable integrated resource planning.

Most importantly, this will translate into some key advantages for Coherent customers, especially their bulk OEMs, including:
-Single point concentration and diffusion achieved in the production of all ultra short pulse (USP) lasers
-Accelerate product development
-Shorten delivery time
-Faster batch production increase
-Flexibility of operation

He added, "This significant transformation in the company's structure demonstrates the maturity of the development of femtosecond lasers. Femtosecond lasers are comparable to picosecond lasers in terms of stability and long-term reliability, operational simplicity, and compact and sturdy packaging. This maturity is reflected in the lasers themselves and their usage: for example, in high-throughput 24/7 industrial applications such as cutting flexible displays, and in life science applications (such as cancer cell analysis), as well as in scientific research in the 'hard core' laboratory (such as attosecond physics).

Chris Dorman pointed out that in all of these fields, femtosecond lasers have become super simple, reliable, and have become tools that can be operated with just one click - much different from engineering innovation a few years ago. They are smaller and more powerful than ever before, and now most types can provide the most advanced and convenient performance.

These characteristics enable femtosecond lasers to be "deeply embedded" in production tools and machines in the display and semiconductor industries, where uninterrupted operation 24/7 is a prerequisite. Laser is also widely used for precision cutting in medical equipment manufacturing departments, such as next-generation coronary artery stents.

The power of femtosecond lasers has also been improved, with the latest Coherent Monaco model providing up to 150 watts of infrared output or up to 50 watts of ultraviolet output. The latter is an important performance indicator for achieving volume cutting of flexible displays.

Fabian Sorensen, Product Line Manager for Industrial Ultra Short Pulse Lasers, explained that the development of this application is occurring simultaneously with changes in laser manufacturing methods. He said, "A key aspect of ultra short pulse lasers nowadays is their maturity as turnkey material processing tools, despite their incredible unique functions.

Customers from large manufacturers to small processing workshops no longer need internal laser engineers. The mass production of our picosecond industrial lasers and scientific femtosecond lasers (such as Chameleon) has fully demonstrated efficient methods. Now, all of our USP/ultrafast lasers will benefit from exactly the same lean manufacturing method.

Sorensen added that another factor behind this unification is the rapidly growing OEM demand for Monaco lasers in the display and semiconductor industries. He explained, "These lasers are very popular in both industries, combining femtosecond pulse width with tens of watts of ultraviolet power or up to 150 watts of near-infrared power to keep up with upstream and downstream processes with the highest quality requirements in high-throughput applications.

Sorensen concluded: So far, we have achieved great success in manufacturing these lasers in Santa Clara, California. Now is the right time to shift production to Scotland, where we have the technology and expertise to increase production and have extremely high unit to unit collaboration. We are able to provide OEM customers with the flexibility they require, while improving product reliability and overall performance, making it better for science Curiosity has transformed into the cornerstone of today's industry.

Source: OFweek

관련 추천
  • Wearable Breakthrough! A rubber like deformable energy storage device using laser precision manufacturing

    Recently, foreign researchers have made remarkable breakthroughs in the field of flexible energy storage devices, successfully developing a small energy storage device that can stretch, twist, fold, and wrinkle freely. This significant achievement has been published in the journal npj Flexible Electronics.With the booming development of wearable technology, the demand for energy storage solutions ...

    2024-04-26
    번역 보기
  • This perovskite solar cell laser equipment company has received another round of financing

    Recently, Lecheng Intelligent Technology (Suzhou) Co., Ltd. (hereinafter referred to as "Lecheng Intelligent") completed a strategic financing round of tens of millions of yuan, which is exclusively invested by Dongfang Fenghai Capital. The financing funds will mainly be used for technology research and development, laboratory construction, and talent recruitment.This is the second round of financ...

    2023-10-10
    번역 보기
  • NASA's laser reflector instrument helps to accurately locate Earth measurements

    The most famous use of GPS satellites is to help people understand their location, whether it is driving cars, ships or planes, or hiking in remote areas. Another important but little-known use is to distribute information to other Earth observation satellites to help them accurately locate measurements of our planet.NASA and several other federal agencies, including the US Space Force, the US Spa...

    2023-12-12
    번역 보기
  • Jenoptik will invest millions of dollars to expand its optical manufacturing facilities

    A high-end manufacturing facility for semiconductor optics will be expanded at Jenoptik’s production campus in Jena, Germany. The photonics group will invest a sum in the low double-digit million euro range starting at the end of 2025.On the expanded production areas, Jenoptik will manufacture sophisticated, high-quality optical components that are mainly used in the semiconductor equipment indust...

    09-13
    번역 보기
  • The project cycle has been significantly shortened! Scientists use supercomputing to assist in laser fusion research

    Recently, the Laser Energy Laboratory (LLE) at the University of Rochester installed a new supercomputer to support its laser fusion experiments.The new supercomputer has increased the computing power of the laboratory by four times and shortened the time required to complete certain projects from 30 weeks to a few days.The Laser Energy Laboratory (LLE) at the University of Rochester is one of the...

    2023-10-26
    번역 보기