한국어

A research team from the University of Chicago in the United States has demonstrated a new method for obtaining mid infrared emission using colloidal quantum dots (QDs)

740
2023-09-21 15:52:59
번역 보기

According to reports, a research team at the University of Chicago in the United States recently demonstrated a new method for obtaining mid infrared emission using colloidal quantum dots (QDs), which may open up new applications for mid infrared light sources.

Colloidal quantum dots are a type of semiconductor nanocrystal material that provides a promising approach for the synthesis of light sources in large quantities through wet chemical solution processing technology.

The electroluminescence of colloidal quantum dots in the visible light range has been highly efficient and cost-effective, but other wavelengths have been proven to be more challenging so far, especially in the mid infrared region.


The Philippe Guyot SiOnnest Laboratory (PGS Laboratory) at the University of Chicago specializes in the study of nanocrystalline quantum dots generated by colloidal synthesis chemistry. A colloidal quantum dot with significantly improved emission characteristics in the mid infrared band has been developed and its research results have been published in the journal Nature Photonics.

Mid infrared light source
Xingyu Shen from PGS Laboratory commented, "This cost-effective and easy-to-use method of manufacturing infrared light sources using quantum dots may be very useful. This discovery may ultimately lead to significantly cheaper mid infrared LEDs and lasers, or new technological applications.

The above work is based on the previous research on the manufacturing and performance of quantum dot devices in PGS laboratory, including efforts to improve the size distribution of nanoparticles and the development of nanocrystalline quantum dot infrared detectors, which may be comparable to commercial devices at extremely low costs.

In 2022, the research team demonstrated the first mid infrared colloidal quantum dot LED based on mercury telluride (HgTe), which has semiconductor properties and stability, facilitating infrared emission. The team pointed out at the time that this quantum dot "has the potential to break the extremely high 'cost/gram' of infrared imaging through exciting new manufacturing processes.

In the new project, the team further studied the manufacturing technology and luminescence methods of colloidal quantum dots, inspired by the established laser emission cascade method, where electrons pass through a series of different energy levels and emit a portion of energy in the form of light at each level.

According to the PGS laboratory, so far this cascade technology has never been achieved using colloidal quantum dots. The laboratory has created a black "ink" of HgTe nanocrystals, which are "coated" on a substrate and illuminated by an electric current.

According to a paper published by the team in the journal Nature Photonics, the colloidal quantum dot emits a quantum efficiency of 4.5% μ The mid infrared light of m is close to commercial epitaxial cascaded quantum well light-emitting diodes. Through further optimization, this cascading method may surpass existing methods.

We are very excited about this possibility, "Guyot SiOnnest said." This is one of the best examples of potential applications of colloidal quantum dots. More applications can be achieved through other materials, but this system architecture really works because of quantum mechanics. I think it is driving the field forward in a very interesting way.

Source: Sohu

관련 추천
  • New insights into the interaction between femtosecond laser and living tissue

    The N-linear optical microscope has completely changed our ability to observe and understand complex biological processes. However, light can also harm organisms. However, little is known about the mechanisms behind the irreversible disturbances of strong light on cellular processes.To address this gap, the research teams of Hanieh Fattahi and Daniel Wehner from the Max Planck Institute for Photos...

    2024-06-07
    번역 보기
  • Innovative nanoparticle analysis: achieving breakthrough 3D imaging using X-ray lasers

    The latest progress in X-ray laser technology has opened up a new era of nanoscale exploration, bringing unprecedented opportunities for materials science and nanotechnology. Researchers have developed a novel imaging technique that can directly visualize separated nanosamples in free flight, capturing their complex structures with stunning details. This breakthrough method relies on single cohere...

    2024-03-05
    번역 보기
  • Ireland's first biological Brillouin microscope at Trinity College Dublin

    A project at Trinity College Dublin is now hosting Ireland's first BioBrillouin microscope instrument, applying Brillouin spectroscopy to life sciences and medicine.This should in particular enhance the College's research into cellular and tissue mechanics for the study of inflammation, cancer, and developmental biology.Brillouin microscopy offers a route to optical investigation of a biological s...

    07-14
    번역 보기
  • Entangled photon pairs generated by quantum light sources can be used for quantum computing and cryptography

    A new device composed of semiconductor rings generates pairs of entangled photons, which can be used in photon quantum processors.Quantum light sources generate entangled photon pairs, which can be used in quantum computing and cryptography. A new experiment has demonstrated a quantum light source made from semiconductor gallium nitride. This material provides a multifunctional platform for devic...

    2024-03-30
    번역 보기
  • French laser giant's profits decline, laser radar business restructuring

    Recently, Marvel Fusion, a pioneer in the field of laser fusion, successfully raised 62.8 million euros (approximately 70.3 million US dollars) in funding. This funding will provide strong impetus for its fusion technology demonstration on existing laser equipment and accelerate the comprehensive technology validation process at its facility in Colorado, with the goal of achieving this milestone b...

    2024-10-09
    번역 보기