한국어

Laser gyroscopes measure small changes in daytime length on Earth

360
2023-09-19 14:36:29
번역 보기

Recently, scientists used laser gyroscopes to measure that the change in Earth's rotational speed is less than one millionth. This technology can help scientists understand the complex flow of water and air, which can cause the smallest adjustments to the Earth's rotation.

The Earth's rotation is not completely stable. Planets accelerate or slow down as they rotate, slightly shortening or prolonging a day by a few milliseconds. Many of these changes are well-known. For example, one of the changes is caused by tidal forces, which are generated by the gravitational pull of the moon and sun, causing the Earth to deform. Scientists know how to predict these effects on Earth's rotation. However, other changes caused by fluctuations in the Earth's atmosphere and water bodies are more difficult to estimate.

The gyroscope, known as the "G", is located at the Wetzl Geodetic Observatory in Germany and aims to measure these small impacts. This is the so-called ring laser gyroscope. In it, the laser beam propagates around a square ring of 4 meters on each side. One bundle rotates clockwise, while the other bundle rotates counterclockwise. The wavelength of a beam of light that is aligned with the direction of Earth's rotation will be elongated, while a beam of light that propagates against the direction of Earth's rotation will contract. When combined, two beams of light with slightly different wavelengths will generate a "beat" signal, similar to two slightly out of tune notes.

Researchers reported in the September 18th issue of the journal Nature Photonics that this rhythm reveals the speed of Earth's rotation, allowing G to measure the length of a day with an accuracy of over one millisecond.

Other methods of measuring the Earth's rotational speed rely on external references. For example, telescopes can use the position of distant quasars (bright cores of active galaxies) to determine the degree of Earth's rotation. But these technologies provide the average results within a day. G measures the rotation rate every few hours. Its measurements were conducted in an underground laboratory.

Physicist Ulrich Schreiber of the Technical University of Munich stated that there is no need to understand the external world, "because gyroscopes measure absolute rotation." This means that the rotation it measures is not relative to other references, but rather the rotation itself.

Scientists have previously measured the Earth's rotation and tilt using other laser gyroscopes (SN: 7/17/20). But they have not yet measured the length of a day to the high accuracy achieved by G. The gyroscope is also stable enough to operate continuously for several months, allowing researchers to sort out changes that occur over a long time scale.

The function of G is unique: "This measurement is considered impossible for other detectors," said physicist Angela Di Virgilio of the National Institute of Nuclear Physics in Pisa, Italy, who was not involved in the new study. Therefore, they obtained some results from this impressive instrument, which is a good thing.

These measurements can help scientists improve their models of Earth's air circulation and ocean currents. In the future, scientists hope to measure more elusive effects through improved ring laser gyroscopes. According to Albert Einstein's general theory of relativity, rotating planets drag spacetime. A ring laser gyroscope may one day perceive the twists and turns of time and space.

Source: Laser Network

관련 추천
  • Laser printing on fallen leaves can produce sensors for medical and laboratory use

    The manufacturing of sensors through 3D printing combines speed, design freedom, and the possibility of using waste as a substrate. In the circular economy model, various results have been achieved, and typically discarded residues are used as low-cost resources. A research team in Brazil has proposed a highly creative solution that involves printing electrochemical sensors on fallen leaves. The t...

    2024-05-16
    번역 보기
  • IPG introduces a new dual-beam laser with the highest single-mode core power

    From September 12 to 14, 2023, IPG Photonics, a well-known fiber laser technology leader in the United States, will showcase its latest innovative laser solutions at the Battery Show in Michigan, USA. IPG will also showcase industry-leading fiber laser sources and automated laser systems for electric vehicle battery welding applications.New laser technology pushes the limits of battery welding spe...

    2023-09-14
    번역 보기
  • X photon 3D nanolithography

    Virtual and Physical Prototypes: X-ray laser direct writing 3D nanolithography.Multi-photon polymerization (MPP), also known as 3D nanoprinting, has been investigated using wavelength-tunable femtosecond lasers. At a fixed pulse width of 100 fs, any spectral color in the range of 500nm to 1200nm can be used, which reveals the interaction of more subtle photophysical mechanisms than two-photon phot...

    2023-09-11
    번역 보기
  • Shanghai Institute of Optics and Fine Mechanics has made progress in the research of interferometer wavefront calibration methods

    Recently, the research team of the High end Optoelectronic Equipment Department at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made progress in the study of wavefront calibration methods for interferometer testing. The relevant research results were published in Optics Express under the title of "High precision wavefront correction method ininterometer tes...

    2024-07-23
    번역 보기
  • Trumpf and SiMa. ai collaboration to develop AI laser

    Recently, Trumpf Group, a leading global provider of machine tools and laser technology solutions, announced that it has partnered with software company SiMa AI has signed a partnership agreement to develop lasers with artificial intelligence (AI).It is reported that SiMa. ai is a software centric embedded edge machine learning chip system company, and the goal of both parties is to equip Trumpf'...

    2024-07-19
    번역 보기