한국어

Omnitron Announces Partnership with Silex Microsystems to Mass Produce MEMS Scanning Mirrors for LiDAR

220
2023-09-19 14:14:49
번역 보기

According to reports, Omnitron Sensors, a pioneer in the development of MEMS sensing technology for large-scale and low-cost markets, recently announced that it will collaborate with Silex Microsystems, a subsidiary of Semielectronics, to mass produce MEMS scanning mirrors for LiDAR.

Eric Aguilar, co-founder and CEO of Omnitron Sensors, said, "We have noticed a huge demand from manufacturers of advanced driving assistance systems (ADAS), drones, and other robotic systems for low-cost, highly reliable LiDARs.

We have chosen Silex Microsystems, the world's largest pure MEMS foundry, to demonstrate our market readiness to deliver the first batch of MEMS scanning mirrors that can meet the accuracy, reliability, size, cost, and volume requirements of LiDAR in different applications
Concept proof MEMS scanning mirror developed by Omnitron Sensors.

According to Omnitron Sensors, its MEMS scanning mirror can provide 2-3 times the field of view (FoV) compared to other MEMS scanning mirrors currently used in remote LiDAR applications. Its stepper scanning mirror is designed specifically for harsh high vibration automotive environments and drone applications, and LiDAR gyroscopes produced by other suppliers cannot meet the demanding requirements of these applications.

Omnitron Sensors' solution has constructed an electrostatic motor that can move MEMS mirrors and achieve greater unit area force than similar products currently on the market. Aguilar stated that Omnitron Sensors achieved this goal using a 3D MEMS topology, but more importantly, its manufacturability. To ensure a simple and manufacturable process, Aguilar stated that their MEMS scanning mirrors do not use metal springs, but instead use silicon based springs, which have a hardness one thousand times that of the original and will not wear out.

Addressing MEMS Manufacturing Challenges
The challenges of MEMS device manufacturing are well known. Due to issues with the size, reliability, durability, and repeatability of MEMS devices, as well as the uniqueness of each new MEMS device process technology, MEMS manufacturing costs are high and the cycle from design to delivery is slow. The core IP of Omnitron Sensors can address these challenges.

As a new topology of MEMS, Omnitron Sensors' IP has redesigned its manufacturing process and provided support through new packaging technologies. This has accelerated the mass production of various small, low-cost, and precision MEMS devices, from scanning mirrors and inertial measurement units to microphones, pressure sensors, and switches.

Aguilar said: Omnitron Sensors' new MEMS topology, cleverly redesigning silicon process steps and new packaging methods, is an important step forward in the microelectronics industry. It greatly reduces the manufacturing complexity that has limited MEMS growth to date. By utilizing the standard equipment and processes already in place at the Silex Microsystems wafer factory, Omnitron Sensors have cleared the way for fast, large-scale delivery of robust, reliable, and affordable MEMS devices .

Source: Sohu

관련 추천
  • Shanghai University of Technology publishes the latest Nature paper

    With the increasing demand for human data, the requirements for data storage methods are also increasing. Optical Data Storage (ODS) is a light based storage method commonly used in DVDs, which is low-cost and very durable. But ODS usually stores data in a single layer, and the amount of data that can be stored is limited. Gu Min, academician of Shanghai University of Technology, Wen Jing, and Rua...

    2024-02-26
    번역 보기
  • Researchers at the Technion-Israel Institute of Technology have developed coherently controlled spin optical lasers based on single atomic layers

    Researchers at the Technion-Israel Institute of Technology have developed a coherently controlled spin optical laser based on a single atomic layer.This discovery was made possible by coherent spin-dependent interactions between a single atomic layer and a laterally constrained photonic spin lattice, which supports a high-Q spin valley through Rashaba-type spin splitting of photons of bound states...

    2023-09-12
    번역 보기
  • Acousto optic modulation of gigawatt level laser pulses in the ambient air of Nature Photonics

    An interdisciplinary research group, including the German synchrotron radiation accelerator DESY and the Helmholtz Institute in Jena, Germany, reported that invisible gratings made of air not only are not damaged by lasers, but also maintain the original quality of the beam. The relevant research has been published in Nature Photonics under the title of "Acousto opt modulation of gigawatt scale la...

    2023-10-12
    번역 보기
  • BAE conducts laser pipeline scanning tests at the shipyard

    BAE Systems Australia has successfully conducted experiments at the Osborne Naval Shipyard and Henderson Shipyard, using laser scanning technology to create 3D models of pipelines that will be installed on the currently under construction Hunter class frigates.A one week trial was conducted at the Zero Line Future factory in southern Adelaide and BAE Systems Australia's Henderson Shipyard, demonst...

    2023-12-13
    번역 보기
  • Laser company nLIGHT announces financial results for the second quarter of 2024

    Recently, nLIGHT, a manufacturer of high-power semiconductors and fiber lasers, announced its financial performance for the second quarter of 2024.According to the financial report, nLIGHT achieved a revenue of $50.5 million in the second quarter of 2024, a year-on-year decrease of 5.2% and an increase of 13% compared to the first quarter; The GAAP net loss for the second quarter was $11.7 million...

    2024-08-20
    번역 보기