한국어

New and Strongest Laser Born in the United States

799
2025-05-28 11:16:45
번역 보기

The ZEUS laser at the University of Michigan recently achieved a breakthrough of doubling the peak power of the strongest laser in the United States through its first 2 quadrillion watt experiment. Although this instantaneous power only lasts for 25 attosecond (one billionth of a second), it exceeds the total power of the global power grid by more than a hundred times.

Karl Krushelnick, director of the G é rard Mourou Ultrafast Optics Science Center, which is affiliated with ZEUS, said, "This marks the official entry of high field strength science in the United States into unknown territories." In addition to plasma and quantum physics research, the facility's achievements will also benefit eight major fields such as healthcare and national security. As an open research platform, ZEUS has attracted 58 scientists from 22 institutions worldwide to submit experimental plans.

Professor Franklin Dollar, the leader of the first 20 quadrillion watt experiment at the University of California, Irvine, explained that "the uniqueness of ZEUS lies in its ability to decompose lasers into multiple independent light sources." His team is working to generate electron beam energy equivalent to that of a hundred meter particle accelerator, which will be 5-10 times the historical record of the facility.

John Nees (left) and laser engineer Paul Campbell (right) are working in target area 1, where the first 2 quadrillion watt user experiment will be conducted. ZEUS is now the most powerful laser in the United States

The core of the experiment lies in the innovative design of a dual laser collaborative system: one beam constructs a guiding channel, and the other beam achieves electron acceleration. Anatoly Maksimchuk, the chief engineer of the project, revealed that the team has extended the length of the helium target chamber to create a more persistent "wake field acceleration" effect of laser pulses in the plasma - when electrons chase after the decelerating laser pulses, it is like a surfer closely following the wake of a speedboat, gaining sustained kinetic acceleration.

Later this year, ZEUS will witness its iconic experiment: the collision of accelerated electrons with reverse laser pulses. In the electronic reference frame, a 3 quadrillion watt laser is equivalent to a 10 quadrillion watt pulse, which is the origin of the name "Zeva equivalent ultra short pulse system". Vyacheslav Lukin, Director of the Physics Department at NSF, pointed out that this breakthrough will drive innovation in medical technologies such as cancer treatment.

Inside this facility, which is only the size of a sports arena, there are multiple black technologies hidden: a 30 centimeter diameter titanium sapphire crystal serves as the core amplifier, and the global stock is few and far between; The pulse compression technology with a thickness of 8 microns (less than 1/10 of printing paper) breaks through the limit of energy density. John Nees, the chief engineer of the project, emphasized that the flexibility of medium-sized facilities enables them to quickly respond to new research ideas.

The upgrade path from 300 terawatts to 30 quadrillion watts is full of challenges: the titanium sapphire crystal that took four and a half years to build, and the carbon deposition problem caused by molecular residues in the vacuum chamber, have all made the team walk on thin ice. Since its launch in October 2023, ZEUS has completed 11 cutting-edge experiments and will continue to upgrade towards full power in the coming year. As NSF has stated, this' national research heavyweight 'is reclaiming America's dominant position in the field of strong lasers.

Source: Yangtze River Delta Laser Alliance

관련 추천
  • Commitment to achieving 100 times the speed of on-chip lasers

    Although lasers are common in daily life, their applications go far beyond the scope of light shows and barcode reading. They play a crucial role in telecommunications, computer science, and research in biology, chemistry, and physics. In the latter field, lasers that can emit extremely short pulses are particularly useful, approximately one trillionth of a second or less.By operating these lasers...

    2023-11-13
    번역 보기
  • Advanced OPA enhances the energy of attosecond imaging ultra short pulses

    The attosecond level ultra short laser pulse provides a powerful method for detecting and imaging ultra short processes, such as the motion of electrons in atoms and molecules.Although ultra short laser pulses can be generated, generating ultra short and high-energy pulses is a continuous challenge. In order to expand the photon energy, photon flux, and continuous bandwidth of isolated attosecond ...

    2024-05-11
    번역 보기
  • Dutch satellite instruments have achieved milestone achievements in transmitting laser data to Earth

    TNO wrote that this is the first time Dutch technology has been used to send data from a satellite to a ground station press release on Earth. This technology uses invisible laser signals to achieve faster and safer data flow compared to ubiquitous communication radio frequencies.Kees Buijsrogge, Director of TNO Space, said, "This critical milestone marks a significant achievement for the Netherla...

    2024-01-25
    번역 보기
  • Stratasys announces Q3 2024 financial report, with a net loss of $26.6 million

    Stratasys (Nasdaq: SSYS) has announced its earnings for the third quarter of 2024, indicating a bright future for the company. The company is increasing profits and gross margins by cutting costs and focusing more on rapidly growing industries such as aerospace, automotive, defense, medical equipment, and dentistry. CEO Yoav Zeif shared that the new F3300 3D printer has performed well in the marke...

    2024-11-15
    번역 보기
  • The First Operation of Two Color Mode in Infrared Free Electron Laser

    The Fritz Haber Institute of the Max Planck Institute in Berlin has achieved a technological milestone. The infrared free electron laser operates in dual color mode for the first time. This globally unique technology makes it possible to conduct experiments on synchronous dual color laser pulses, opening up new possibilities for research.There are over a dozen free electron lasers worldwide, with ...

    2024-02-18
    번역 보기