日本語

A German research team has developed a new type of perovskite stacked battery

1124
2025-02-08 16:14:20
翻訳を見る

According to relevant media reports, a research team from the Helmholtz Center in Berlin, Germany, and Humboldt University has jointly developed a new type of perovskite stacked battery. This battery has broken the world record for similar batteries with a photoelectric conversion efficiency of 24.6%.

 



In the solar cell family, in addition to silicon-based solar cells, there are also thin-film solar cells such as copper, indium, gallium, and selenium based thin-film solar cells (CIGS cells). The production of this type of battery requires very little energy and materials, so its impact on the environment is also minimal.

The team combined CIGS cells as the bottom with perovskite based top cells to develop a new stacked solar cell. By optimizing the contact layer between the top and bottom batteries, they increased the energy efficiency of the new battery to 24.6%. This energy efficiency value has been certified as a new world record by the Fraunhofer Institute for Solar Energy Systems in Germany.

The team also developed CIGS sub cells and contact layers, and used high-performance cluster systems. This system can accurately deposit perovskite and contact layers in a vacuum environment, providing a solid guarantee for the high efficiency of new batteries. They believe that in the future, the photovoltaic conversion efficiency of new perovskite stacked solar cells is expected to exceed 30%.

Source: opticsky

関連のおすすめ
  • Researchers have reinvented laser free magnetic control

    In a significant advancement in material physics, researchers from Germany and the United States have theoretically demonstrated that only extremely thin materials need to be α- RuCl3 can be placed in an optical cavity to control its magnetic state.This discovery may pave the way for new methods of controlling material properties without the use of strong lasers.The Role of Optical Vacuum W...

    2023-11-09
    翻訳を見る
  • The Institute of Physics, Chinese Academy of Sciences has made significant progress in the research of lithium niobate nanooptics

    In recent years, breakthroughs in the preparation technology of lithium niobate single crystal thin films have greatly promoted the important application of lithium niobate crystals in micro nano optical devices such as optical metasurfaces. However, the high hardness and inactive chemical properties of lithium niobate crystals pose significant challenges to micro nano processing; In addition, con...

    04-15
    翻訳を見る
  • Researchers treated MXene electrodes with lasers to improve lithium-ion battery performance

    Researchers at King Abdullah University of Science and Technology (KAUST) in Saudi Arabia have found that laser scribing or creating nanodots on battery electrodes can improve their storage capacity and stability. The method can be applied to an alternative electrode material called MXene.Lithium-ion batteries have multiple drawbacks in a wide range of applications, and researchers around ...

    2023-08-04
    翻訳を見る
  • Free space nanoprinting beyond optical limitations can create 4D functional structures

    Two photon polymerization is a potential method for nanofabrication of integrated nanomaterials based on femtosecond laser technology. The challenges faced in the field of 3D nanoprinting include slow layer by layer printing speed and limited material selection due to laser material interactions.In a new report in Progress in Science, Chenqi Yi and a team of scientists in the fields of technical s...

    2023-10-09
    翻訳を見る
  • Changguang Huaxin's revenue in the first half of the year was 142 million yuan, and its net profit decreased by 117.97% year-on-year

    On August 30th, Changguang Huaxin released its results for the first half of 2023. In the first half of this year, the company achieved a revenue of 142 million yuan, a year-on-year decrease of 43.23%; Net profit attributable to shareholders of the listed company -10.6374 million yuan, a year-on-year decrease of 117.97%.Due to macroeconomic factors such as a slowdown in economic growth, market con...

    2023-08-31
    翻訳を見る