日本語

Dalian Institute of Chemical Physics has made progress in the interdisciplinary field of photochemistry and photophysics

1390
2025-01-09 14:21:30
翻訳を見る

Recently, the team led by Wu Kaifeng, a researcher at the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, and Zhu Jingyi, an associate researcher, has made progress in the interdisciplinary field of photochemistry and photophysics. The team directly observed the quantum coherence properties of hybrid free radical pairs composed of quantum dots and organic molecules, achieving efficient magnetic field coherence control of triplet photochemical yield.

After photogenerated charge separation, two spin related free radicals are generated, called free radical pairs. Free radicals have singlet and triplet spin configurations. The mutual conversion between them is a true quantum coherence process. More importantly, this conversion process can be regulated by applying an external magnetic field. This magnetic field effect has attracted much attention in fields such as spin chemistry, quantum biology, and quantum sensing. For example, some studies have proposed that the magnetic field effect plays an important role in animal navigation, where migratory animals use the geomagnetic field to coherently regulate the triplet recombination yield of photo generated free radicals in their bodies, triggering a cascade process of sensing signals to achieve precise navigation. Inspired by this, the magnetic field effects of free radical pairs composed of organic molecules have been widely studied, but their magnetic field effects are generally weak and it is difficult to obtain universal regulatory laws. This is because the physical processes that occur in free radical pairs often involve multiple complex interactions, including external magnetic field Zeeman effect, spin exchange interaction, dipole interaction, electron nucleus hyperfine interaction, etc.

The Wu Kaifeng team is dedicated to the research of quantum dot ultrafast photophysics and photochemistry. These preliminary works laid the foundation for constructing quantum dot molecule hybrid radical pairs and regulating triplet photochemical processes based on their quantum coherence properties. In principle, such hybrid free radicals should possess unique 'quantum superiority'. This is because the Lande g-factor of quantum dots can be adjusted over a wide range through composition and confinement effects, resulting in a large and adjustable Δ g with organic molecules and generating significant magnetic field effects. Meanwhile, the exchange coupling strength between quantum dots and molecules can be quantitatively controlled through confinement effects.

This study constructed a hybrid system of II-VI quantum dots and Alizarin molecules, and based on magnetic field modulation femtosecond transient absorption spectroscopy and quantum dynamics theory simulation, revealed the coherent behavior of hybrid free radicals on the dynamics of triplet state recombination. Unlike artificially prepared pure organic radical pairs, in quantum dot molecule hybrid systems, by adjusting the size and composition of quantum dots, a wide range of Δ g regulation between 0.1 and 1 can be achieved, which is two orders of magnitude higher than in organic systems. Under the influence of a huge Δ g, the study directly observed the coherent beat frequency of free radical pairs between different spin quantum states. Thanks to the fast quantum beat frequency, efficient magnetic field control of the dynamics of triplet state recombination by free radicals has been achieved at room temperature. The yield of triplet state under 2T magnetic field is 400% higher than that under 0T. Furthermore, the study coupled magnetic field effects with steady-state photochemical reactions to achieve magnetic field regulation of the photochemical isomerization reaction of β - carrot. The theoretical simulation results, transient dynamics of magnetic field modulation, and steady-state photochemical reaction rate are highly consistent, confirming the reliability of magnetic field coherent regulation.

The work elucidates the "quantum superiority" of hybrid free radicals in photochemical reactions, and utilizes this superiority to achieve efficient magnetic field control of photochemical triplet processes. This magnetic field effect, which can be easily controlled by adjusting the size and composition of quantum dots, provides a new research direction for spin chemistry and has potential applications in emerging fields such as quantum sensing and biomimetic quantum biology.

The related research results were published in Nature Materials under the title of Coherent Manipulation of Photocatalytic Spin Riplet Formation in Quantum Dot Molecular Hybrids. The research work was supported by the National Natural Science Foundation of China, the Chinese Academy of Sciences strategic leading science and technology project (Category B), the Chinese Academy of Sciences youth team plan for stable support in basic research, etc.

Source: opticsky

関連のおすすめ
  • New technology can efficiently heal cracks in nickel based high-temperature alloys manufactured by laser additive manufacturing

    Recently, Professor Zhu Qiang's team from the Department of Mechanical and Energy Engineering at Southern University of Science and Technology published their latest research findings in the Journal of Materials Science. The research team has proposed a new process for liquid induced healing (LIH) laser additive manufacturing of cracks. By controlling micro remelting at grain boundaries to introdu...

    2024-03-15
    翻訳を見る
  • Pressure sensing using dual color laser absorption spectroscopy

    The research team led by Professor Gao Xiaoming and Professor Liu Kun of the Chinese Academy of Sciences Hefei Institute of Physical Sciences recently designed a concentration independent pressure sensing technology for high-temperature combustion diagnosis. This method is based on dual color laser absorption spectroscopy.The results of this study have been published in Optics Letters.Aircraft eng...

    2024-03-09
    翻訳を見る
  • LASER CHINA 2025 on-the-Spot, What New Technologies are Trending This Year?

    Every year, Shanghai is lit up with a “feast of light”, that is LASER World of PHOTONICS CHINA, which has lasted for 20 years and become an arena for global photoelectric enterprises to display and compete, instead of just an exhibition hall of devices. Chanelink team visited all these halls for laser technology, thoroughly learning the cutting-edge trends in photoelectric industry.As a technical...

    03-19
    翻訳を見る
  • Personnel changes at Optimax, a precision optical manufacturer

    On November 25th, Optimax, the largest precision optics manufacturer in the United States, announced the appointment of Joseph Spilman as CEO and Pete Kupinski as President. After developing a comprehensive succession plan, Optimax CEO Rick Plympton will retire along with President and Founder Mike Mandina.Mandina stepped down in 2021 and passed on the title of CEO to Spilman, strategically appo...

    2024-11-28
    翻訳を見る
  • Fraunhofer ILT has developed a process for forming hard material components using USP laser technology

    Tools made of hard materials are very wear-resistant, but the tools used to produce these tools are prone to wear and tear. Laser tools are the solution. Researchers at the Fraunhofer Institute for Laser Technology (ILT) have developed a process chain that can use ultra short pulse (USP) lasers to shape and polish hard material components without the need to replace clamping devices.Drills, millin...

    10-17
    翻訳を見る