日本語

Shanghai Institute of Optics and Fine Mechanics has made progress in the generation of third harmonic in laser air filamentation

188
2024-10-10 13:58:05
翻訳を見る

Recently, the team from the State Key Laboratory of Intense Field Laser Physics, Shanghai Institute of Optics and Mechanics, Chinese Academy of Sciences found that the third-order harmonics induced by air filamentation of high repetition rate femtosecond lasers have significant self jitter. To solve this bottleneck problem, a solution based on an external DC electric field was proposed, which significantly reduced the beam direction and intensity jitter of third-order harmonics, providing an idea for generating stable, high-energy, high repetition rate ultraviolet and extreme ultraviolet laser sources. The related research results were published in Optics&Laser Technology under the title of Improving the Beam Pointing and Intensity Stability of the Third Harmonic Generation in Air Film.

Ultraviolet and extreme ultraviolet lasers have wide applications in high-resolution imaging, material processing, and advanced spectroscopy. Harmonics are one of the important means to obtain these short wavelength lasers. The traditional harmonic generation method based on nonlinear crystals is limited by the crystal's UV transmittance cutoff wavelength, damage threshold, and other factors, making it difficult to obtain high-energy UV light sources. The third harmonic induced by laser gas filamentation can overcome the above limitations.

In this work, the team studied the stability of the third harmonic induced by femtosecond laser air filamentation and found that under high repetition rate conditions, the jitter of the third harmonic beam generated by laser filamentation was significantly enhanced (Figure 1), which seriously affected the stability of the third harmonic and became a technical bottleneck restricting its application. To solve this problem, the research team innovatively introduced an external DC electric field, successfully suppressing the pointing and intensity jitter of the third harmonic beam. The experimental results showed that at a repetition rate of 1 kHz, the beam pointing jitter was reduced by about 50%, and the intensity jitter was effectively suppressed (Figure 2). This is because the external electric field can suppress the plasma recombination effect, reduce the heat deposition caused by plasma recombination between pulses, and thus reduce the intensity of airflow turbulence caused by thermal diffusion. The numerical simulation results of fluid dynamics further confirm the improvement of the stability of the laser filament plasma channel by the external DC electric field, thereby enhancing the stability of the third harmonic. This study not only lays the foundation for the development of high-energy ultraviolet and extreme ultraviolet laser sources with high repetition rate and high stability, but also opens up new opportunities for their applications in imaging, precision machining and other fields.

Figure 1. Cloud map of the pointing distribution of the third harmonic (TH) beam at different repetition rates. (a) 50Hz, (b) 100Hz, (c) 500Hz, (d) 1kHz. The variation curve of the pointing deviation distance (e) and intensity jitter (f) of the third harmonic beam with the repetition frequency of the filament. The red dots indicate the directional distribution of the pump laser before it becomes filamentous.

Figure 2. (a) Distribution cloud map of TH beam direction generated based on 1kHz optical fiber without and after applying an electric field. (b) The relationship between the deviation distance of 1kHz TH beam pointing and the voltage applied to the optical fiber. (c) The relationship between the intensity jitter of 1kHz TH and the voltage applied to the optical fiber.

This work has been supported by the joint fund project of the National Natural Science Foundation of China, the Shanghai Science and Technology Project, the key international cooperation project of the Chinese Academy of Sciences and other projects.

Source: Opticsky

関連のおすすめ
  • Application and Effect of Laser Cleaning

    Mold cleaning: Mold plays a very important role in industrial production. Currently, there are over a thousand mold related enterprises in China, driving the related output value to nearly 10 billion yuan. Among them, mold cleaning is an essential step in mold production. Laser can achieve contactless cleaning of molds, which is very safe for the surface of the mold, ensuring its accuracy, and can...

    2023-10-14
    翻訳を見る
  • Dr. Torsten Derr will be appointed as the CEO of SCHOTT Group on January 1, 2025

    November 25, 2024, Mainz, GermanyStarting from January 1, 2025, Dr. Torsten Derr will take over as the CEO of SCHOTT Group.The new CEO of SCHOTT Group previously served as the CEO of SGL Carbon SE.Starting from January 1, 2025, Dr. Torsten Derr will officially assume the position of CEO of SCHOTT Group. SCHOTT Group announced in October 2024 that Dr. Torsten Derr will succeed Dr. Frank Heinrich, w...

    2024-11-27
    翻訳を見る
  • Data from the 2023/2024 fiscal year of Tongkuai Group shows a decline in sales and order volume

    German high-tech company TRUMPF has released data for the 2023/24 fiscal year: sales decreased by 3.6% to 5.2 billion euros, and orders decreased by 10.4% to 4.6 billion euros. The global number of employees has increased by 650, with a total of over 19000 employees, and the number of employees in Germany has increased by nearly 400.As of June 30, 2024, at the end of the 2023/24 fiscal year, the s...

    2024-10-21
    翻訳を見る
  • Tokyo Institute of Technology collaborates with EX Fusion to promote laser fusion energy closer to commercialization

    Recently, Tokyo Institute of Technology and EX Fusion established a collaborative research group focused on promoting liquid metal equipment to achieve commercial laser fusion reactors. The two sides held an official signing ceremony in Tokyo on October 11th, marking the official start of their cooperation.The EX Fusion Liquid Metals Collaborative Research Group was established with the support of...

    2023-10-17
    翻訳を見る
  • Progress has been made in the research of single shot characterization technology for complex combination laser pulses at Shanghai Institute of Optics and Fine Mechanics

    Recently, the research team of the High Power Laser Physics Joint Laboratory at the Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, has made significant progress in the study of single shot characterization technology for complex combination laser pulses. The research team utilized an improved broadband transient grating frequency resolved optical switch technology (T...

    03-24
    翻訳を見る