日本語

Hamamatsu Photonics completes construction of new factory area

391
2024-08-01 14:22:45
翻訳を見る

Recently, Hamamatsu Photonics in Japan completed the construction of a new building at Miyakoda Manufacturing Co., Ltd. in Hamami ku, Hamamatsu City. The completion ceremony was held on July 29th, and the factory will start full production in November 2024, increasing overall production capacity by 2.5 times.

Source: Hamamatsu Photonics
It is reported that Hamamatsu Photonics focuses on the development, manufacturing, and sales of semiconductor lasers, laser oscillators, and application products using various lasers in the fields of measurement, analysis, processing, FA, medical, etc. After the completion of the new factory, its semiconductor laser assembly and post-processing processes will be integrated into the new plant, with an expected annual production capacity of about 25 million units (equivalent to a single chip).

The factory started construction in May 2023, was completed in July 2024, and started production in November. The total investment is approximately 4.1 billion yen (equivalent to 194 million yuan), with a total construction area of 6720 square meters, expected to accommodate about 160 employees.

For the construction of the new factory, Hamamatsu Photonics stated that it will optimize the workflow between manufacturing processes, while introducing the most advanced manufacturing and testing equipment to promote process automation and efficiency, and improve productivity.

As is well known, semiconductor lasers are the core components of high-performance sensor LiDAR. In recent years, the application of LiDAR technology in the automotive industry has been rapidly expanding, especially with the popularity of autonomous driving and ADAS (Advanced Driver Assistance Systems), greatly driving the growth of the LiDAR market.

According to YOLE data, the global market size of automotive LiDAR has reached $538 million in 2023, and it is expected to grow to $3.632 billion in 2029, with a compound annual growth rate of up to 38%. This indicates that the LiDAR market will maintain a strong growth trend in the coming years.

With the rapid growth of the LiDAR market, there will also be a surge in demand for semiconductor lasers. Hamamatsu Photonics is building a new factory to meet this market demand and expand the sales of semiconductor lasers.

However, some in the industry believe that although the new factory of Hamamatsu Photonics was completed in July, the production increase has been delayed, which may mean that the demand growth for laser radar used in autonomous driving has been postponed, and the speed of equipment introduction will be slower than initially expected.

In addition to the completion of the new factory, recently Hamamatsu Photonics also completed the acquisition of NKT Photonics, a Danish manufacturer of high-performance fiber lasers and photonic crystal fibers.

This acquisition stems from Hamamatsu Photonics' strategic acquisition of NKT Photonics for 205 million euros in June 2022. In May 2023, the Danish government temporarily shelved the acquisition on national security grounds. In response to this, Hamamatsu Photonics did not give up, but took further action and finally acquired NKT Photonics in early June this year. After two years, NKT Photonics has now been acquired by Photonics Management Europe S.R.L, a wholly-owned subsidiary of Hamamatsu Photonics K.K.

However, it is puzzling that before completing the acquisition, NKT Photonics was sued in the local federal court on April 17, 2024. Omni Continuum LLC (a company owned by Professor Mohammed N. Islam at the University of Michigan) accuses NKT Photonics of infringing two technology patents related to its "multi-stage supercontinuum" laser in industrial, medical, defense, and quantum applications, and claims at least $18 million. However, the latest developments in this patent infringement case have not yet been announced.

Source: OFweek

関連のおすすめ
  • Laser printing on fallen leaves can produce sensors for medical and laboratory use

    The manufacturing of sensors through 3D printing combines speed, design freedom, and the possibility of using waste as a substrate. In the circular economy model, various results have been achieved, and typically discarded residues are used as low-cost resources. A research team in Brazil has proposed a highly creative solution that involves printing electrochemical sensors on fallen leaves. The t...

    2024-05-16
    翻訳を見る
  • New and Strongest Laser Born in the United States

    The ZEUS laser at the University of Michigan recently achieved a breakthrough of doubling the peak power of the strongest laser in the United States through its first 2 quadrillion watt experiment. Although this instantaneous power only lasts for 25 attosecond (one billionth of a second), it exceeds the total power of the global power grid by more than a hundred times.Karl Krushelnick, director of...

    05-28
    翻訳を見る
  • Phil Energy from South Korea wins mysterious order from European battery manufacturer

    Recently, Phil Energy, a South Korean secondary battery equipment manufacturer, successfully won an order from a European battery manufacturer to manufacture the next generation 46 series cylindrical battery manufacturing equipment. At present, both parties have signed a supply agreement for this cooperation, but have not disclosed the customer name and order size to the public. It is understood...

    2024-07-25
    翻訳を見る
  • Xi'an Institute of Optics and Fine Mechanics: New progress in large field two-photon scattering microscopy imaging technology

    Adaptive optics is a technique that improves imaging quality by correcting wavefront distortion. Interference focus sensing (IFS), as a new method proposed in the field of adaptive optics in recent years, has been proven to have significant effects in correcting complex aberrations in deep tissue imaging. This technology is based on measuring a single location within the sample to determine the ca...

    04-15
    翻訳を見る
  • Tokyo Institute of Technology collaborates with EX Fusion to promote laser fusion energy closer to commercialization

    Recently, Tokyo Institute of Technology and EX Fusion established a collaborative research group focused on promoting liquid metal equipment to achieve commercial laser fusion reactors. The two sides held an official signing ceremony in Tokyo on October 11th, marking the official start of their cooperation.The EX Fusion Liquid Metals Collaborative Research Group was established with the support of...

    2023-10-17
    翻訳を見る