日本語

Halo Industries raises 580 million yuan to achieve significant breakthrough in SiC laser processing field

841
2024-07-18 15:13:25
翻訳を見る

Recently, Halo Industries, an innovative technology company based in California, announced that it has successfully raised $80 million in Series B venture capital, marking a significant breakthrough in its use of laser technology to revolutionize the production of silicon carbide (SiC) semiconductor wafer substrates.

This financing is led by the US Innovation Technology Fund (USIT) and involves heavyweight investment institutions such as 8VC and SAIC, aiming to accelerate the commercialization process of technology and establish a new "gold standard" for Halo in SiC substrate production.

This startup separated from a research laboratory at Stanford University in 2014 to develop tools and technologies for manufacturing thin and flexible silicon for solar and semiconductor applications. The company is located in Santa Clara and has challenged the industry status quo in recent years with its disruptive multi-step process, aiming to significantly reduce wafer costs and lay a solid foundation for SiC power electronic devices in the electric vehicle (EV) and renewable energy fields.

Halo Industries has significantly increased the production and quality of SiC wafers through its manufacturing innovation, accelerating growth opportunities for multiple downstream applications including electric vehicles (EVs), electric vehicle charging stations, solar/wind electronics, grid infrastructure, industrial motor drives, HVAC, power rail/transportation, and aerospace/defense.

Halo Industries emphasizes that its innovative laser cutting method demonstrates significant advantages over traditional sawing techniques in reducing wafer defects and lowering energy and water consumption. SiC materials are considered an ideal choice for high-efficiency power electronic devices due to their wider electronic bandgap characteristics, and Halo's technology is the key to unlocking this potential.

Through our laser slicing tool, Halo has not only increased the yield and quality of SiC, but also greatly reduced waste and production costs, injecting strong momentum into the rapid development of clean energy technology, "said Andrei Iancu, CEO of the company.

With the surge in demand for high-efficiency power electronics products in the market, Halo's laser manufacturing tools and SiC production strategy are seen as a major "weapon" to promote sustainable electrification.

Halo has demonstrated strong production capacity: currently producing 1000 wafers per month and plans to increase it to 24000 wafers by the end of this year, with growth potential perfectly aligned with industry demand.

According to analyst reports, the global SiC wafer production in 2019 was approximately 100 million pieces, indicating a huge growth potential for this market. Halo's technological innovation not only increases the output of each wafer, but also effectively avoids the wafer bending and warping problems in traditional methods, further consolidating its market leading position.

The success of the California Energy Commission project has validated the outstanding performance of Halo technology, its zero material loss potential, and efficient mass production, indicating a significant reduction in the cost of conductive SiC substrates, bringing unprecedented cost-effectiveness advantages to advanced power electronics products. Halo is actively expanding its production capacity to meet the growing market demand and continues to drive the semiconductor industry towards a cleaner and more efficient direction.

This financing not only lays a solid financial foundation for Halo's future development, but also provides unlimited possibilities for its technological innovation and market expansion.

Halo Industries is leading a new era in SiC wafer production with its unique laser technology and steadfast market vision, contributing significantly to the global clean energy revolution.

Source: OFweek

関連のおすすめ
  • Laserline introduces the first blue 4 kW laser

    Laserline will once again showcase its latest laser systems for joining and deposition welding at this year's Welding & Cutting show in Hall 5. This time the focus is on the world's first blue diode laser with an output power of 4 kW, which is said to have been developed for processing copper components.Its 445 nanometer wavelength is absorbed by copper and copper alloys, which is five t...

    2023-09-06
    翻訳を見る
  • Blue Tile Lab, a company specializing in semiconductor backend process visual inspection and laser light sources, has received additional financing

    Recently, South Korean listed company APS has invested in Blue Tile Lab, a company engaged in semiconductor backend process visual inspection and laser light sources. Meanwhile, D&T, a subsidiary of APS specializing in the production of laser cutting equipment for secondary batteries, has also made its first investment in Blue Tile Lab.According to relevant information, APS made its first inve...

    2024-12-26
    翻訳を見る
  • The UK team collaborated to evaluate epitaxial materials for surface-coupled lasers

    Sivers Photonics, a leading UK-based supplier of optical fiber communications and III-V semiconductor Photonics devices, has announced that it has received an initial order from UK-based laser developer Vector Photonics to evaluate epitaxial materials for a new next-generation surface-coupled laser project.The order, which includes laser manufacturing and life testing, will be the first time the t...

    2023-09-11
    翻訳を見る
  • Research on High Strength and High Toughness TC11 Titanium Alloy with Multi Laser Coaxial Wire Feeding and Directed Energy Deposition

    Researchers from Huazhong University of Science and Technology, AVIC Xi'an Aircraft Design and Research Institute, AVIC Xi'an Aircraft Industry Group Co., Ltd., Shanghai Aerospace Equipment Manufacturing General Factory Co., Ltd., State Key Laboratory of Aircraft Control Integration Technology, Beijing Xinghang Electromechanical Equipment Co., Ltd. and Nanjing Yingigma Automation Co., Ltd. reporte...

    05-14
    翻訳を見る
  • Researchers use liquid metal and laser ablation to create stretchable micro antennas

    Researchers have developed a new method of making micro stretchable antenna with water gel and liquid metal. These antennas can be used for wearable and flexible wireless electronic devices to provide links between devices and external systems for power transmission, data processing, and communication.Using our new manufacturing method, we have demonstrated that the length of liquid metal antennas...

    2023-09-19
    翻訳を見る