日本語

Halo Industries raises 580 million yuan to achieve significant breakthrough in SiC laser processing field

370
2024-07-18 15:13:25
翻訳を見る

Recently, Halo Industries, an innovative technology company based in California, announced that it has successfully raised $80 million in Series B venture capital, marking a significant breakthrough in its use of laser technology to revolutionize the production of silicon carbide (SiC) semiconductor wafer substrates.

This financing is led by the US Innovation Technology Fund (USIT) and involves heavyweight investment institutions such as 8VC and SAIC, aiming to accelerate the commercialization process of technology and establish a new "gold standard" for Halo in SiC substrate production.

This startup separated from a research laboratory at Stanford University in 2014 to develop tools and technologies for manufacturing thin and flexible silicon for solar and semiconductor applications. The company is located in Santa Clara and has challenged the industry status quo in recent years with its disruptive multi-step process, aiming to significantly reduce wafer costs and lay a solid foundation for SiC power electronic devices in the electric vehicle (EV) and renewable energy fields.

Halo Industries has significantly increased the production and quality of SiC wafers through its manufacturing innovation, accelerating growth opportunities for multiple downstream applications including electric vehicles (EVs), electric vehicle charging stations, solar/wind electronics, grid infrastructure, industrial motor drives, HVAC, power rail/transportation, and aerospace/defense.

Halo Industries emphasizes that its innovative laser cutting method demonstrates significant advantages over traditional sawing techniques in reducing wafer defects and lowering energy and water consumption. SiC materials are considered an ideal choice for high-efficiency power electronic devices due to their wider electronic bandgap characteristics, and Halo's technology is the key to unlocking this potential.

Through our laser slicing tool, Halo has not only increased the yield and quality of SiC, but also greatly reduced waste and production costs, injecting strong momentum into the rapid development of clean energy technology, "said Andrei Iancu, CEO of the company.

With the surge in demand for high-efficiency power electronics products in the market, Halo's laser manufacturing tools and SiC production strategy are seen as a major "weapon" to promote sustainable electrification.

Halo has demonstrated strong production capacity: currently producing 1000 wafers per month and plans to increase it to 24000 wafers by the end of this year, with growth potential perfectly aligned with industry demand.

According to analyst reports, the global SiC wafer production in 2019 was approximately 100 million pieces, indicating a huge growth potential for this market. Halo's technological innovation not only increases the output of each wafer, but also effectively avoids the wafer bending and warping problems in traditional methods, further consolidating its market leading position.

The success of the California Energy Commission project has validated the outstanding performance of Halo technology, its zero material loss potential, and efficient mass production, indicating a significant reduction in the cost of conductive SiC substrates, bringing unprecedented cost-effectiveness advantages to advanced power electronics products. Halo is actively expanding its production capacity to meet the growing market demand and continues to drive the semiconductor industry towards a cleaner and more efficient direction.

This financing not only lays a solid financial foundation for Halo's future development, but also provides unlimited possibilities for its technological innovation and market expansion.

Halo Industries is leading a new era in SiC wafer production with its unique laser technology and steadfast market vision, contributing significantly to the global clean energy revolution.

Source: OFweek

関連のおすすめ
  • Snapmaker introduces new 20W and 40W laser modules

    Snapmaker has opened pre-orders for 20W and 40W laser modules, which are significant upgrades to the modules available on existing Snapmaker machines.Snapmaker says that with the 40W module installed, you will be able to cut 15 mm basswood plywood at a time at a speed of 20 mm/SEC. With 20W, you will cut 10mm at a rate of 10mm/SEC. That's a lot more than Artisan and Snapmaker 2.0 - both are comp...

    2023-08-04
    翻訳を見る
  • Latest breakthrough! 3500W free output blue semiconductor laser

    The 3500W free output blue semiconductor laser beam is output in a free space manner, with a rectangular spot directly acting on the material surface without the need for fiber optics or laser processing heads. This laser has a wavelength of 455 ± 10nm, with continuously adjustable power and a maximum output power of over 3500W. It is mainly used for non-ferrous metal cladding, quenching, etc., to...

    2024-09-03
    翻訳を見る
  • Improvements in LiDAR technology will help NASA scientists and explorers perform remote sensing and measurement functions

    Improvements in LiDAR technology will assist NASA scientists and explorers in remote sensing and measurement, surveying, 3D image scanning, hazard detection and avoidance, and navigation.Like sonar that uses light instead of sound, LiDAR technology is increasingly helping NASA scientists and explorers with remote sensing and measurement, surveying, 3D image scanning, hazard detection and avoidance...

    2023-10-26
    翻訳を見る
  • The 2023 International Quantum Photonics Conference attracted over 600 attendees from 16 countries and regions

    On November 25th, Jinhua welcomed the 2023 International Quantum Photon Conference, which will lead the future of technology. This grand event is jointly hosted by the Chinese Society of Optical Engineering and the Jinhua Municipal Government, with joint support from the University of Science and Technology of China, Zhejiang Normal University, and the PhotoniX journal. The conference, with the th...

    2023-11-27
    翻訳を見る
  • Yang Xueming from Shenzhen has been elected as a Foreign Fellow of the Royal Society of England

    On May 20th, the Royal Society announced on its official website that over 90 scientists who have made outstanding contributions to scientific research have been newly elected as Fellow of The Royal Society (FRS). Yang Xueming, an academician of the CAS Member and chief director of the Shenzhen Free Electron Laser Device, was newly elected as a foreign academician of the Royal Society of England.A...

    05-26
    翻訳を見る